《Imbalance problems in object detection: A review》笔记

《Imbalance problems in object detection: A review》探讨了目标检测中的不平衡问题,包括类别不平衡、尺度不平衡、空间不平衡和目标不平衡4大类。类别不平衡涉及前景-背景和前景-前景类别;尺度不平衡关注对象/边框尺度和特征;空间不平衡体现在回归损失和IoU分布;目标不平衡源于分类和回归任务的不平衡。论文提出多种解决方法,如采样策略、特征融合、损失函数优化等。
摘要由CSDN通过智能技术生成

简介

论文《Imbalance problems in object detection: A review》对目标检测中的不平衡问题做了综合的叙述。该论文对目标检测的不平衡问题做了系统性的分类,根据相关的输入属性,把不平衡问题划分成4大类,8个小类。

目标检测的不平衡问题分类

与类别的不平衡问题相关的输入属性是不同类别的输入的边框数量,这也是这个类别的分类依据。前景类和背景类的边框数不同导致了前景-背景类别不平衡问题。而前景类中不同类别的边框数不同导致了前景-前景类别不平衡问题。

对象/边框的尺度不平衡问题的划分依据的是输入图片和真实边框的尺度。不同对象/边框具有不同的尺度,这些尺度分布得不均匀,造成了对象/边框的尺度不平衡问题。

特征不平衡问题划分依据是骨架网络的不同抽象层对特征层的贡献。这句话用一个例子来解释,例如低级细节特征和高级语义特征对特征层的贡献度不同。R-CNN使用的RoI特征一般来自骨干网络的最后一层特征层,该层主要包含高级语义特征,几乎不含低级细节特征。低级特征和高级特征含量的不同会影响检测的效果。

回归损失的不平衡问题的划分依据是单独样本对回归损失的贡献。不同的样本会产生不同的回归损失,离群点(outlier)会产生很大的损失,占据总回归损失的很大一部分,影响回归器的训练。

IoU分布不平衡问题的划分依据是正样本的边框的IoU分布。正样本的IoU分布有很大的偏向性,比如偏向IoU=0.5,影响检测器的检测效果。

对象位置不平衡问题的划分依据是对象在图片中的位置。在实际情况下,对象不可能均匀地落在图片的各个位置。

目标不平衡问题的划分依据是不同任务对总损失的贡献。目标检测是一个多目标任务,包括分类和回归。分类损失和回归损失的不平衡会影响各自的优化。

在目标检测训练流程中,每个阶段都会出现1个或者多个不平衡问题,下图显示了每个流程出现的其中一个不平衡问题,(a)是目标检测的训练流程,(b)是出现的不平衡问题。

目标检测训练流程和不平衡问题

下面我会详细地描述不同不平衡问题和相关的解决方法。

类别不平衡

类别的不平衡可以通过下图类别统计直方图直观地表现出来。
类别统计直方图

前景-背景类别不平衡

定义 在前景-背景类不平衡问题中,代表过多的类和代表不足的类分别是背景类和前景类。这种类型的问题是不可避免的,因为如上图所示,大多数边框被标记为背景(即负)类。前景-背景不平衡问题是在训练期间发生的,它不取决于数据集中每个类的例子数,因为它们在背景上不包含任何注释。

解决方法包括hard sampling methods、soft sampling methods、sampling-free methods和generative methods。

采样的方法科学的描述是,每个样本对分类损失都有一个贡献度,或者说权重。hard sampling methods 的每个样本的权重取值范围是 { 0 , 1 } \{0,1\} { 0,1},所以说是hard,而soft sampling methods的每个样本的权重取值范围是 [ 0 , 1 ] [0,1] [0

  • 4
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值