关于Bessel不等式和Parseval等式的几点注解

1. Bessel不等式:设X为内积空间,M=\left \{e_{n}:n\geqslant 1 \right \}为标准正交集,Bessel不等式如下:

\sum_{i=1}^{\infty} \left |<x,e_{i}> \right |^{2} \leqslant \left \| x \right \|^{2}

证明较简单,首先令:

 y=\sum_{i=1}^{n} <x,e_{i}> e_{i}

\forall x\in X,则有(证明过程略):

<y,x-y>= ... =0\Rightarrow \left \| x \right \|^{2}=\left \| y \right \|^{2}+\left \| x-y \right \|^{2}

因此有:\left \| y \right \|^{2} \leq \left \| x \right \|^{2},即

\sum_{i=1}^{n} \left |<x,e_{i}> \right |^{2} \leqslant \left \| x \right \|^{2}

利用单调有界数列必有极限,得到:

\sum_{i=1}^{\infty} \left |<x,e_{i}> \right |^{2} \leqslant \left \| x \right \|^{2}

注意:\sum_{i=1}^{\infty} \left |<x,e_{i}> \right |^{2}收敛性比\sum_{i=1}^{\infty} <x,e_{i}> e_{i}更强一点。可以证明,在Hilbert空间下二者收敛性相同,更一般地,有:

\sum_{i\geq 1} <a_{i},e_{i}>\sum_{i\geq 1} \left | a_{i} \right |^{2}收敛性相同。

2.  下面考虑一种特殊的内积空间,即Hilbert空间:

  • 下面的无穷级数一定是收敛的:

\sum_{i=1}^{\infty} <x,e_{i}> e_{i}

  • 如果M为标准正交基(完全的标准正交集),则上式收敛到x
  • 如果M为标准正交基,则Bessel不等式进一步表示为Parseval等式:

\sum_{i=1}^{\infty} \left |<x,e_{i}> \right |^{2} = \left \| x \right \|^{2}

3. 综上:Parseval等式是Bessel不等式在内积空间完备+标准完全正交集下的特例。

4.在傅里叶分析中的应用。

持续更新中。。。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值