数学分析 傅里叶级数(第15章)

本文探讨了傅里叶级数的基本概念,包括三角级数、正交函数系、傅里叶系数的计算,以及傅里叶级数的收敛定理。详细介绍了函数在特定条件下的傅里叶级数展开,以及傅里叶级数如何收敛于函数的左、右极限算术平均值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.傅里叶级数
1.三角级数与正交函数系
(1)三角级数与三角函数系:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

定理15.1:若级数 ∣ a 0 ∣ 2 + ∑ n = 1 ∞ ( ∣ a n ∣ + ∣ b n ∣ ) \frac{|a_0|}{2}+\displaystyle\sum_{n=1}^{\infty}(|a_n|+|b_n|) 2a0+n=1(an+bn)收敛,则级数(4)在整个数轴上绝对收敛且一致收敛
在这里插入图片描述

(2)三角函数系与正交函数系:
在这里插入图片描述
2.以 2 Π 2Π 2Π为周期的函数的傅里叶级数
(1)傅里叶系数:

定理15.2:若在整个数轴上 f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s   n x + b n s i n   n x ) ( 9 ) f(x)=\frac{a_0}{2}+\displaystyle\sum_{n=1}^{\infty}(a_ncos\,nx+b_nsin\,nx)\qquad(9) f(x)=2a0+n=1(ancosnx+bnsinnx)(9)且等式右边一致收敛,则有如下关系式 a n = 1 Π ∫ − Π Π f ( x ) c o s   n x d x   ( n = 0 , 1 , 2... ) b n = 1 Π ∫ − Π Π f ( x ) s i n   n x d x   ( n = 1 , 2... )      ( 10 ) \begin{matrix}a_n=\frac{1}{Π}\int_{-Π}^Πf(x)cos\,nxdx\,(n=0,1,2...)\\b_n=\frac{1}{Π}\int_{-Π}^Πf(x)sin\,nxdx\,(n=1,2...)\:\:\:\,\end{matrix}\qquad(10) an=Π1ΠΠf(x)cosnxdx(n=0,1,2...)bn=Π1ΠΠf(x)sinnxdx(n=1,2...)(10)
在这里插入图片描述
在这里插入图片描述

(2)傅里叶级数:
在这里插入图片描述
3.收敛定理:

定理15.3(收敛定理):若以 2 Π 2Π 2Π为周期的函数 f f f [ − Π , Π ] [-Π,Π] [Π,Π]上按段光滑,则在 ∀ x ∈ [ − Π , Π ] ∀x∈[-Π,Π] x[Π,Π]处, f f f的傅里叶级数(12)收敛于 f f f x x x处的左,右极限的算数平均值,即 f ( x + 0 ) + f ( x − 0 ) 2 = a 0 2 + ∑ n = 1 ∞ ( a n c o s   n x + b n s i n   n x ) \frac{f(x+0)+f(x-0)}{2}=\frac{a_0}{2}+\displaystyle\sum_{n=1}^{\infty}(a_ncos\,nx+b_nsin\,nx) 2f(x+0)+f(x0)=2a0+n=1(ancosnx+bnsinnx)其中 a n , b n a_n,b_n an,bn f f f的傅里叶系数
在这里插入图片描述

按段光滑:
在这里插入图片描述
在这里插入图片描述

该定理指出: f f f的傅里叶级数在点 x x x处收敛于该点处 f f f的左,右极限的算术平均值 f ( x + 0 ) + f ( x − 0 ) 2 \frac{f(x+0)+f(x-0)}{2} 2f(x+0)+f(x0);而当 f f f在点 x x x处连续时,有 f ( x + 0 ) + f ( x − 0 ) 2 = f ( x ) \frac{f(x+0)+f(x-0)}{2}=f(x) 2f(x+0)+f(x0)=f(x),即此时 f f f的傅里叶级数收敛于 f ( x ) f(x) f(x);故有如下推论
推论:若 f f f是以 2 Π 2Π 2Π为周期的连续函数,且在 [ − Π , Π ] [-Π,Π] [Π,Π]上按段光滑,则 f f f的傅里叶级数在 ( − ∞ , ∞ ) (-∞,∞) (,)上收敛于 f f f

注意:区间 [ − Π , Π ] [-Π,Π] [Π,Π]也可改为任何长度为 2 Π 2Π 2Π的区间:
在这里插入图片描述

关于傅里叶级数的周期延拓:
在这里插入图片描述

二.函数的傅里叶级数展开
在这里插入图片描述
1.以 2 l 2l 2l为周期的函数的傅里叶级数:
在这里插入图片描述
在这里插入图片描述
2.偶函数与奇函数的傅里叶级数:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
三.收敛定理的证明
1.贝塞尔不等式(Bessel Inequality):

预备定理1:若函数 f f f [ − Π , Π ] [-Π,Π] [Π,Π]上可积,则 a 0 2 + ∑ n = 1 ∞ ( a n 2 + b n 2 ) ≤ 1 Π ∫ − Π Π f 2 ( x ) d x ( 1 ) \frac{a_0}{2}+\displaystyle\sum_{n=1}^{\infty}(a_n^2+b_n^2)≤\frac{1}{Π}\int_{-Π}^Πf^2(x)dx\qquad(1) 2a0+n=1(an2+bn2)Π1ΠΠf2(x)dx(1)其中 a n , b n a_n,b_n an,bn f f f的傅里叶系数,(1)式称为贝塞尔不等式
在这里插入图片描述
在这里插入图片描述

推论1(黎曼-勒贝格定理):若 f f f为可积函数,则 lim ⁡ n → ∞ ∫ − Π Π f ( x ) c o s   n x d x = 0 lim ⁡ n → ∞ ∫ − Π Π f ( x ) s i n   n x d x = 0 ( 5 ) \begin{matrix}\displaystyle\lim_{n\to\infty}\int_{-Π}^Πf(x)cos\,nxdx=0\\\displaystyle\lim_{n\to\infty}\int_{-Π}^Πf(x)sin\,nxdx=0\end{matrix}\qquad(5) nlimΠΠf(x)cosnxdx=0nlimΠΠf(x)sinnxdx=0(5)
在这里插入图片描述

推论2:若 f f f为可积函数,则 lim ⁡ n → ∞ ∫ 0 Π f ( x ) s i n ( n + 1 2 ) x d x = 0 lim ⁡ n → ∞ ∫ − Π 0 f ( x ) s i n ( n + 1 2 ) x d x = 0 ( 6 ) \begin{matrix}\displaystyle\lim_{n\to\infty}\int_0^Πf(x)sin(n+\frac{1}{2})xdx=0\\\displaystyle\lim_{n\to\infty}\int_{-Π}^0f(x)sin(n+\frac{1}{2})xdx=0\end{matrix}\qquad(6) nlim0Πf(x)sin(n+21)xdx=0nlimΠ0f(x)sin(n+21)xdx=0(6)
在这里插入图片描述
在这里插入图片描述

2.傅里叶级数部分和的积分表达式:

预备定理2:若 f ( x ) f(x) f(x)是以 2 Π 2Π 2Π为周期的函数,且在 [ − Π , Π ] [-Π,Π] [Π,Π]上可积,则其傅里叶级数部分和 S n ( x ) S_n(x) Sn(x)可写成: S n ( x ) = 1 Π ∫ − Π Π f ( x + t ) s i n ( n + 1 2 ) t 2 s i n t 2 d t ( 8 ) S_n(x)=\frac{1}{Π}\int_{-Π}^Πf(x+t)\frac{sin(n+\frac{1}{2})t}{2sin\frac{t}{2}}dt\qquad(8) Sn(x)=Π1ΠΠf(x+t)2sin2tsin(n+21)tdt(8) t = 0 t=0 t=0时,被积函数中的不定式由极限 lim ⁡ t → 0 s i n ( n + 1 2 ) t 2 s i n t 2 = n + 1 2 \displaystyle\lim_{t\to0}\frac{sin(n+\frac{1}{2})t}{2sin\frac{t}{2}}=n+\frac{1}{2} t0lim2sin2tsin(n+21)t=n+21来确定
在这里插入图片描述
在这里插入图片描述

3.收敛定理的证明:

重述定理15.3(收敛定理):定理15.3(收敛定理):若以 2 Π 2Π 2Π为周期的函数 f f f [ − Π , Π ] [-Π,Π] [Π,Π]上按段光滑,则在 ∀ x ∈ [ − Π , Π ] ∀x∈[-Π,Π] x[Π,Π]处, f f f的傅里叶级数(12)收敛于 f f f x x x处的左,右极限的算数平均值,即 f ( x + 0 ) + f ( x − 0 ) 2 = a 0 2 + ∑ n = 1 ∞ ( a n c o s   n x + b n s i n   n x ) \frac{f(x+0)+f(x-0)}{2}=\frac{a_0}{2}+\displaystyle\sum_{n=1}^{\infty}(a_ncos\,nx+b_nsin\,nx) 2f(x+0)+f(x0)=2a0+n=1(ancosnx+bnsinnx)其中 a n , b n a_n,b_n an,bn f f f的傅里叶系数
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值