一.傅里叶级数
1.三角级数与正交函数系
(1)三角级数与三角函数系:
定理15.1:若级数 ∣ a 0 ∣ 2 + ∑ n = 1 ∞ ( ∣ a n ∣ + ∣ b n ∣ ) \frac{|a_0|}{2}+\displaystyle\sum_{n=1}^{\infty}(|a_n|+|b_n|) 2∣a0∣+n=1∑∞(∣an∣+∣bn∣)收敛,则级数(4)在整个数轴上绝对收敛且一致收敛
(2)三角函数系与正交函数系:
2.以
2
Π
2Π
2Π为周期的函数的傅里叶级数
(1)傅里叶系数:
定理15.2:若在整个数轴上 f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n x + b n s i n n x ) ( 9 ) f(x)=\frac{a_0}{2}+\displaystyle\sum_{n=1}^{\infty}(a_ncos\,nx+b_nsin\,nx)\qquad(9) f(x)=2a0+n=1∑∞(ancosnx+bnsinnx)(9)且等式右边一致收敛,则有如下关系式 a n = 1 Π ∫ − Π Π f ( x ) c o s n x d x ( n = 0 , 1 , 2... ) b n = 1 Π ∫ − Π Π f ( x ) s i n n x d x ( n = 1 , 2... ) ( 10 ) \begin{matrix}a_n=\frac{1}{Π}\int_{-Π}^Πf(x)cos\,nxdx\,(n=0,1,2...)\\b_n=\frac{1}{Π}\int_{-Π}^Πf(x)sin\,nxdx\,(n=1,2...)\:\:\:\,\end{matrix}\qquad(10) an=Π1∫−ΠΠf(x)cosnxdx(n=0,1,2...)bn=Π1∫−ΠΠf(x)sinnxdx(n=1,2...)(10)
(2)傅里叶级数:
3.收敛定理:
定理15.3(收敛定理):若以 2 Π 2Π 2Π为周期的函数 f f f在 [ − Π , Π ] [-Π,Π] [−Π,Π]上按段光滑,则在 ∀ x ∈ [ − Π , Π ] ∀x∈[-Π,Π] ∀x∈[−Π,Π]处, f f f的傅里叶级数(12)收敛于 f f f在 x x x处的左,右极限的算数平均值,即 f ( x + 0 ) + f ( x − 0 ) 2 = a 0 2 + ∑ n = 1 ∞ ( a n c o s n x + b n s i n n x ) \frac{f(x+0)+f(x-0)}{2}=\frac{a_0}{2}+\displaystyle\sum_{n=1}^{\infty}(a_ncos\,nx+b_nsin\,nx) 2f(x+0)+f(x−0)=2a0+n=1∑∞(ancosnx+bnsinnx)其中 a n , b n a_n,b_n an,bn为 f f f的傅里叶系数
按段光滑:
该定理指出: f f f的傅里叶级数在点 x x x处收敛于该点处 f f f的左,右极限的算术平均值 f ( x + 0 ) + f ( x − 0 ) 2 \frac{f(x+0)+f(x-0)}{2} 2f(x+0)+f(x−0);而当 f f f在点 x x x处连续时,有 f ( x + 0 ) + f ( x − 0 ) 2 = f ( x ) \frac{f(x+0)+f(x-0)}{2}=f(x) 2f(x+0)+f(x−0)=f(x),即此时 f f f的傅里叶级数收敛于 f ( x ) f(x) f(x);故有如下推论
推论:若 f f f是以 2 Π 2Π 2Π为周期的连续函数,且在 [ − Π , Π ] [-Π,Π] [−Π,Π]上按段光滑,则 f f f的傅里叶级数在 ( − ∞ , ∞ ) (-∞,∞) (−∞,∞)上收敛于 f f f
注意:区间 [ − Π , Π ] [-Π,Π] [−Π,Π]也可改为任何长度为 2 Π 2Π 2Π的区间:
关于傅里叶级数的周期延拓:
二.函数的傅里叶级数展开
1.以
2
l
2l
2l为周期的函数的傅里叶级数:
2.偶函数与奇函数的傅里叶级数:
三.收敛定理的证明
1.贝塞尔不等式(Bessel Inequality):
预备定理1:若函数 f f f在 [ − Π , Π ] [-Π,Π] [−Π,Π]上可积,则 a 0 2 + ∑ n = 1 ∞ ( a n 2 + b n 2 ) ≤ 1 Π ∫ − Π Π f 2 ( x ) d x ( 1 ) \frac{a_0}{2}+\displaystyle\sum_{n=1}^{\infty}(a_n^2+b_n^2)≤\frac{1}{Π}\int_{-Π}^Πf^2(x)dx\qquad(1) 2a0+n=1∑∞(an2+bn2)≤Π1∫−ΠΠf2(x)dx(1)其中 a n , b n a_n,b_n an,bn为 f f f的傅里叶系数,(1)式称为贝塞尔不等式
推论1(黎曼-勒贝格定理):若 f f f为可积函数,则 lim n → ∞ ∫ − Π Π f ( x ) c o s n x d x = 0 lim n → ∞ ∫ − Π Π f ( x ) s i n n x d x = 0 ( 5 ) \begin{matrix}\displaystyle\lim_{n\to\infty}\int_{-Π}^Πf(x)cos\,nxdx=0\\\displaystyle\lim_{n\to\infty}\int_{-Π}^Πf(x)sin\,nxdx=0\end{matrix}\qquad(5) n→∞lim∫−ΠΠf(x)cosnxdx=0n→∞lim∫−ΠΠf(x)sinnxdx=0(5)
推论2:若 f f f为可积函数,则 lim n → ∞ ∫ 0 Π f ( x ) s i n ( n + 1 2 ) x d x = 0 lim n → ∞ ∫ − Π 0 f ( x ) s i n ( n + 1 2 ) x d x = 0 ( 6 ) \begin{matrix}\displaystyle\lim_{n\to\infty}\int_0^Πf(x)sin(n+\frac{1}{2})xdx=0\\\displaystyle\lim_{n\to\infty}\int_{-Π}^0f(x)sin(n+\frac{1}{2})xdx=0\end{matrix}\qquad(6) n→∞lim∫0Πf(x)sin(n+21)xdx=0n→∞lim∫−Π0f(x)sin(n+21)xdx=0(6)
2.傅里叶级数部分和的积分表达式:
预备定理2:若 f ( x ) f(x) f(x)是以 2 Π 2Π 2Π为周期的函数,且在 [ − Π , Π ] [-Π,Π] [−Π,Π]上可积,则其傅里叶级数部分和 S n ( x ) S_n(x) Sn(x)可写成: S n ( x ) = 1 Π ∫ − Π Π f ( x + t ) s i n ( n + 1 2 ) t 2 s i n t 2 d t ( 8 ) S_n(x)=\frac{1}{Π}\int_{-Π}^Πf(x+t)\frac{sin(n+\frac{1}{2})t}{2sin\frac{t}{2}}dt\qquad(8) Sn(x)=Π1∫−ΠΠf(x+t)2sin2tsin(n+21)tdt(8)当 t = 0 t=0 t=0时,被积函数中的不定式由极限 lim t → 0 s i n ( n + 1 2 ) t 2 s i n t 2 = n + 1 2 \displaystyle\lim_{t\to0}\frac{sin(n+\frac{1}{2})t}{2sin\frac{t}{2}}=n+\frac{1}{2} t→0lim2sin2tsin(n+21)t=n+21来确定
3.收敛定理的证明:
重述定理15.3(收敛定理):定理15.3(收敛定理):若以 2 Π 2Π 2Π为周期的函数 f f f在 [ − Π , Π ] [-Π,Π] [−Π,Π]上按段光滑,则在 ∀ x ∈ [ − Π , Π ] ∀x∈[-Π,Π] ∀x∈[−Π,Π]处, f f f的傅里叶级数(12)收敛于 f f f在 x x x处的左,右极限的算数平均值,即 f ( x + 0 ) + f ( x − 0 ) 2 = a 0 2 + ∑ n = 1 ∞ ( a n c o s n x + b n s i n n x ) \frac{f(x+0)+f(x-0)}{2}=\frac{a_0}{2}+\displaystyle\sum_{n=1}^{\infty}(a_ncos\,nx+b_nsin\,nx) 2f(x+0)+f(x−0)=2a0+n=1∑∞(ancosnx+bnsinnx)其中 a n , b n a_n,b_n an,bn为 f f f的傅里叶系数