帕塞瓦尔定理(Parseval‘s theorem)的证明

1. Parseval定理

帕塞瓦尔定理(Parseval's theorem)表明了信号在时域和频域上的能量相等,即

\int_{-\infty}^{\infty}|f(t)|^2dt = \frac{1}{2\pi}\int_{-\infty}^{\infty}|F(\omega)|^2d\omega

式中,F(\omega)是信号f(t)的Fourier变换,

F(\omega) = \int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt

2. 证明

\int_{-\infty}^{\infty}|f(t)|^2dt \\ = \int_{-\infty}^{\infty}f(t)f^*(t)dt \\ = \int_{-\infty}^{\infty}\left [ \frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{j\omega t}d\omega \right ] \left [ \frac{1}{2\pi}\int_{-\infty}^{\infty}F^*(\omega')e^{-j\omega' t}d\omega' \right ]dt\\ = \frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)\frac{1}{2\pi}\int_{-\infty}^{\infty}F^*(\omega')\left [ \int_{-\infty}^{\infty}e^{j[\omega-\omega']t}dt \right ]d\omega' d\omega\\ = \frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)\frac{1}{2\pi}\int_{-\infty}^{\infty}F^*(\omega')2\pi\delta(\omega - \omega')d\omega' d\omega\\ = \frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)F^*(\omega)d\omega\\ = \frac{1}{2\pi}\int_{-\infty}^{\infty}|F(\omega)|^2d\omega

得证。

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

带着地球去浪一浪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值