学习笔记|Pytorch使用教程18
本学习笔记主要摘自“深度之眼”,做一个总结,方便查阅。
使用Pytorch版本为1.2
- 为什么要调整学习率?
- pytorch的六种学习率调整策略
- 学习率调整小结
一.为什么要调整学习率?
梯度下降: W i + 1 = W i − g ( W i ) W_{i+1}=W_{i}-g(W_{i}) Wi+1=Wi−g(Wi)
W i + 1 = W i − L R ∗ g ( W i ) W_{i+1}=W_{i}-LR*g(W_{i}) Wi+1=Wi−LR∗g(Wi)
学习率(learning rate)控制更新的步伐
1.class_LRScheduler
主要属性:
- optimizer :关联的优化器
- last_epoch :记录epoch数
- base_Irs:记录初始学习率
主要方法:
- step() :更新下一个epoch的学习率
- get_Ir() :虚函数,计算下一个epoch的学习率
完整代码见:学习笔记|Pytorch使用教程05(Dataloader与Dataset)
在下处进行debug:scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
,并进入(step into)
发现进入的是class StepLR(_LRScheduler)
这个类。
进入(step into):super(StepLR, self).__init__(optimizer, last_epoch)
观察初始化过程。
跳出,进入(step into):scheduler.step() # 更新学习率
二.pytorch的六种学习率调整策略
1.StepLR
功能:等间隔调整学习率
主要参数:
- step_size :调整间隔数
- gamma :调整系数
调整方式: I r = I r ∗ g a m m a Ir=Ir*gamma Ir=Ir∗gamma
测试代码:
import torch
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
torch.manual_seed(1)
LR = 0.1
iteration = 10
max_epoch = 200
# ------------------------------ fake data and optimizer ------------------------------
weights = torch.randn((1), requires_grad=True)
target = torch.zeros((1))
optimizer = optim.SGD([weights]