单发多框检测(SSD)【动手学深度学习】

31 篇文章 454 订阅 ¥9.90 ¥99.00
本文介绍了单发多框检测(SSD)模型的原理和实现,包括基础网络、类别预测层、边界框预测层、多尺度预测连接以及网络结构。SSD利用多尺度特征图生成锚框,预测类别和偏移量,有效检测不同尺寸的目标。文中还提到了针对香蕉检测的数据集和训练模型的过程。
摘要由CSDN通过智能技术生成

        单发多框检测模型主要由一个基础网络块和若干多尺度特征块串联而成。基本网络用于从输入图像中提取特征,可以使用深度卷积神经网络,原论文中选用了在分类层之前阶段的VGG,现在也常用ResNet替代。

        我们可以设计基础网络,使它输出的高和宽较大,这样基于该特征图生成的锚框数量较多,可以用于检测尺寸较小的目标。接下来每个多尺度特征块将上一层特征图的高和宽缩小(如减半),并使特征图中每个单元在输入图像上的感受野变得更广阔。

单发多框检测模型由一个基础网络块和若干多尺度特征块串联而成

 图1 单发多框检测模型

类别预测层

        设目标类别为q,这样每个锚框有q+1个类别,其中0类为背景。在某个尺度下,设特征图的高和宽分别为h和w,如果以每个单元为中心生成a个锚框,则需要对h*w*a个锚框进行分类,如果使用全连接层作为输出,很容易导致模型参数过多。SSD使用卷积层的通道来输出类别预测的方法。即类别预测层使用一个保持输入宽和高的卷积层,这样输出和输入在特征图宽和高上的空间坐标一一对应。考虑输

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东城青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值