只有使用一块gpu训练的模型才可以使用该方法: 就是加载模型的时候在后面加上一个参数map_location='cpu'。然后把所有的.cuda()方法删掉。
模型.load_state_dict(torch.load('训练好的模型路径',map_location='cpu'))
多块gpu训练的模型转cpu参考:https://blog.csdn.net/c654528593/article/details/81539441
当使用单块GPU训练的PyTorch模型时,可通过在加载模型时设置map_location='cpu'来实现转换。同时需要移除所有.cuda()方法调用。
只有使用一块gpu训练的模型才可以使用该方法: 就是加载模型的时候在后面加上一个参数map_location='cpu'。然后把所有的.cuda()方法删掉。
模型.load_state_dict(torch.load('训练好的模型路径',map_location='cpu'))
多块gpu训练的模型转cpu参考:https://blog.csdn.net/c654528593/article/details/81539441
2347
636

被折叠的 条评论
为什么被折叠?