pytorch十三:pytorch搭建AlexNet网络

31 篇文章 454 订阅 ¥9.90 ¥99.00
本文详细介绍了如何使用PyTorch搭建2012年ImageNet比赛冠军模型AlexNet,包括网络结构、参数计算及各层功能解析,如卷积、ReLU、池化和LRN等,并探讨了在训练过程中采用的dropout策略。
摘要由CSDN通过智能技术生成

2012年Imagenet比赛冠军的model——Alexnet (以第一作者alex命名)

模型结构见下图,别看只有寥寥八层(不算input层),但是它有60M以上的参数总量,事实上在参数量上比后面的网络都大。

这里写图片描述

由于当时的显卡容量问题,AlexNet 的60M个参数无法全部放在一张显卡上操作,所以采用了两张显卡分开操作的形式,其中在C3,R1,R2,R3层上出现交互,所谓的交互就是通道的合并,是一种串接操作。 

这个图有点点特殊的地方是卷积部分都是画成上下两块,意思是说吧这一层计算出来的feature map分开,但是当前层用到的数据要看连接的虚线,如图中input层之后的第一层第二层之间的虚线是分开的,是说第二层上面的128map是由第一层上面的48map计算的,下面同理;而第三层前面的虚线是完全交叉的,就是说每一个192map都是由前面的128+128=256map同时计算得到的。

我们来计算下这些参数都是怎么来的: 
C1:96×11×11×3(卷积核个数/宽/高/卷积核的通道数) 34848个 
C2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东城青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值