OpecCV颜色分割

颜色分割

普通读取的图片都是RGB格式,就意味着每种颜色都是由三种RGB组合而成。同样的常用的格式还有HSV,具体的看下面的百度贴过来的:
色调H
用角度度量,取值范围为0°~360°,从红色开始按逆时针方向计算,红色为0°,绿色为120°,蓝色为240°。它们的补色是:黄色为60°,青色为180°,紫色为300°;
饱和度S
饱和度S表示颜色接近光谱色的程度。一种颜色,可以看成是某种光谱色与白色混合的结果。其中光谱色所占的比例愈大,颜色接近光谱色的程度就愈高,颜色的饱和度也就愈高。饱和度高,颜色则深而艳。光谱色的白光成分为0,饱和度达到最高。通常取值范围为0%~100%,值越大,颜色越饱和。
明度V
明度表示颜色明亮的程度,对于光源色,明度值与发光体的光亮度有关;对于物体色,此值和物体的透射比或反射比有关。通常取值范围为0%(黑)到100%(白)。

下面展示使用HSV对图片进行颜色分割,要分割的图片如下:
在这里插入图片描述
HSV格式中,H表示与颜色有关的,所以如果基于颜色分割的话,主要是对H通道进行阈值分割。看图片鸟为一种颜色,背景大致为一种颜色,大致可以猜测H通道的直方图有两个波峰,且背景像素对于小鸟像素,所以选择幅值较小的波峰即为小鸟所在区域:
下面编写代码实现相关的内容:

	img_hsv = cv2.cvtColor(img2,cv2.COLOR_BGR2HSV)
    H,S,V = cv2.split(img_hsv)
    plt.bar([i for i in range(256)],calHist(H))
	plt.show()

首先来看一下H通道的直方图:
在这里插入图片描述
和预测结果相同,可以看到小波峰主要集中在100附近,所以阈值选择需要在100两边:
下面我们来试试不同阈值选择的结果:不同的阈值为【50,120】、【80-120】、【100,120】
在这里插入图片描述
可以看出只要将小波峰完全包进阈值选择范围内就可以选择出来小鸟。
然后利用这个掩码对图像做位与操作:

res = cv2.bitwise_and(img,img,mask=mask)

得到分割出来的小鸟:
在这里插入图片描述
完整的代码如下:

def split_baseColor(img):
    img_blur = cv2.blur(img,ksize=(5,5))
    img_median = cv2.medianBlur(img_blur,5)
    img_gaussian = cv2.GaussianBlur(img_median,(5,5),0)
    img2 = cv2.bilateralFilter(img_gaussian,9,75,75)

    img_hsv = cv2.cvtColor(img2,cv2.COLOR_BGR2HSV)
    H,S,V = cv2.split(img_hsv)
    plt.bar([i for i in range(256)],calHist(H))
    plt.bar([i for i in range(256)],calHist(S))
    plt.bar([i for i in range(256)],calHist(V))
    plt.show()

    low = np.array([50,0,0])
    high = np.array([120,255,255])
    mask = cv2.inRange(img_hsv,low,high)


    res = cv2.bitwise_and(img,img,mask=mask)
    s = np.hstack((img,res))
    s = cv2.pyrDown(s)
    show(s)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值