Anomalib:用于异常检测的深度学习库!

181 篇文章 ¥19.90 ¥99.00
92 篇文章 ¥19.90 ¥99.00
anomalib是一个开源库,提供先进的无监督异常检测算法,支持PyTorch Lightning,可与OpenVINO集成进行实时部署。它强调可重复性、可扩展性、模块化和实时性能,包含多个即用型组件和模型,如CFlow、PatchCore、PADIM等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,今天给大家介绍了一个用于无监督异常检测和定位的新型库:anomalib,Github链接:https://github.com/openvinotoolkit/anomalib

简介

考虑到可重复性和模块化,这个开源库提供了文献中的算法和一组工具,以通过即插即用的方法设计自定义异常检测算法。

Anomalib 包含最先进的异常检测算法,可在基准测试中实现最佳性能,并可现成使用。 此外,该库还提供组件来设计可针对特定需求量身定制的自定义算法。 其他工具,包括实验跟踪器、可视化器和超参数优化器,使设计和实施异常检测模型变得简单。

该库还支持 OpenVINO 模型优化和量化以进行实时部署。 总体而言,anomalib 是一个广泛的库,用于设计、实现和部署从数据到边缘的无监督异常检测模型。

主要特征

  • 最大的即用型深度学习异常检测算法和基准数据集的公共集合。
  • 基于 PyTorch Lightning 的模型实现,以减少样板代码并将实现工作限制在基本要素上。
  • 所有模型都可以导出到 OpenVINO 中间表示 (IR),以在英特尔硬件上进行加速推理
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南七小僧

打赏后,可以添加微信一对一咨询

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值