前言:仅个人小记。为什么专门提一下这个性质? 1. 一个是这个定理本身有意;2. 另一个这里的"1"在“乘模合数群”中很有作用,是否能够取模得到 “1” 决定着是否存在 “逆元”,这一点在讨论群环域中很重要,为判定逆元存在提供了理论支撑。下面将详细讨论。
一、引入命题
白话语言
要想余数为1,则两数必须互质
或者说,如果两个数不互质,则这两个数余数必然不为 1。
数学语言
证明命题如下:
- 如果 a m o d    b = 1 , 则 a ⊥ b a\mod b=1,则a\perp b amodb=1,则a⊥b
- 如果 a ⊥ ̸ b , 则 a m o d    b = ̸ 1 a\perp\not b,则a\mod b=\not 1 a⊥̸b,则amodb≠1
以上1, 2 互为逆否命题,则必然两个命题等价,证明其中一个即可。
二、给出证明
证明:若对于正整数 a, b,
a
⊥
̸
b
a\perp\not b
a⊥̸b,则必然
a
m
o
d
  
b
=
̸
1
a \mod b =\not 1
amodb≠1。
因为
a
⊥
̸
b
a\perp\not b
a⊥̸b所以
g c d ( a , b ) = ̸ 1 gcd(a,b)=\not 1 gcd(a,b)≠1则记
k = g c d ( a , b ) > 1 k=gcd(a,b)>1 k=gcd(a,b)>1则 a, b 可以表示为
a = k ′ ′ k , b = k ′ ′ ′ k , k ′ ′ 和 k ′ ′ ′ 为 整 数 a=k''k,b=k'''k,k''和k'''为整数 a=k′′k,b=k′′′k,k′′和k′′′为整数反证法开始:假设
a m o d    b = 1 a\mod b=1 amodb=1则有,
a = k ′ b + 1 , k ′ 为 整 数 a=k'b+1,k'为整数 a=k′b+1,k′为整数进而将 a, b 的表示式子带入得到
k ′ ′ k = k ′ ( k ′ ′ ′ k ) + 1 k''k=k'(k'''k)+1 k′′k=k′(k′′′k)+1进而有
( k ′ ′ − k ′ k ′ ′ ′ ) k = 1 (k''-k'k''')k=1 (k′′−k′k′′′)k=1显然,
( k ′ ′ − k ′ k ′ ′ ′ ) 为 整 数 , 又 k > 1 , 所 以 ( k ′ ′ − k ′ k ′ ′ ′ ) k = ̸ 1 (k''-k'k''')为整数,又k>1,所以(k''-k'k''')k=\not1 (k′′−k′k′′′)为整数,又k>1,所以(k′′−k′k′′′)k≠1与
( k ′ ′ − k ′ k ′ ′ ′ ) k = 1 矛 盾 (k''-k'k''')k=1矛盾 (k′′−k′k′′′)k=1矛盾故而假设不成立,进而必然有
g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1即
a ⊥ b a\perp b a⊥b
三、结合具体群论例子
G = < { 1 , 2 , . . . , n − 1 } , ∗ > G=<\{1,2,...,n-1\},*> G=<{1,2,...,n−1},∗>,其中n 为合数,二元运算 * 定义为
∀ a , b ∈ G , a ∗ b = a b m o d    n \forall a,b\in G,a*b=ab\mod n ∀a,b∈G,a∗b=abmodn显然 G 满足封闭性、结合律、交换律以及存在幺元,故而 G 是一个交换幺半群。
而我们想要探讨的是这个幺半群中哪些元素是存在逆元的 ?
逆元即,
∀
a
∈
G
,
如
果
∃
b
∈
G
,
使
得
a
b
m
o
d
  
n
=
1
,
则
称
b
为
a
的
逆
元
\forall a\in G,如果\exist b\in G,使得ab\mod n=1,则称b为a的逆元
∀a∈G,如果∃b∈G,使得abmodn=1,则称b为a的逆元这里的余数为1就联系了上述的定理。此时,需求转为
找
到
能
够
使
得
a
b
m
o
d
  
n
=
1
成
立
的
b
找到能够使得ab\mod n=1成立的b
找到能够使得abmodn=1成立的b
根据上述定理知,要想
a
b
m
o
d
  
n
=
1
ab\mod n=1
abmodn=1成立,必须要
a
b
⊥
n
ab\perp n
ab⊥n而要想
a
b
⊥
n
ab\perp n
ab⊥n成立,则必然要有
a
⊥
n
,
b
⊥
n
a\perp n,b\perp n
a⊥n,b⊥n
所以,
a
⊥
n
a\perp n
a⊥n是 a 能够存在逆元的必要条件,即如果
a
⊥
n
a\perp n
a⊥n,a 才有可能是存在逆元的。
小结:借助了上面的定理,缩小了寻找可逆元素的范围。
四、群论例子进一步证明
前要知识
- 若正整数 a ⊥ b a\perp b a⊥b,则必然存在正整数 k ∈ { 0 , 1 , . . . , b − 1 } , 使 得 a k % b = 1 k\in\{0,1,...,b-1\},使得ak\%b=1 k∈{0,1,...,b−1},使得ak%b=1. 参看 https://blog.csdn.net/qq_25847123/article/details/99953705
根据前要知识,显然,因为 a ⊥ n a\perp n a⊥n,所以必然存在 b ∈ { 0 , 1 , . . . , n − 1 } b\in\{0,1,...,n-1\} b∈{0,1,...,n−1}使得 a b % n = 1 ab\%n=1 ab%n=1所以当 a ⊥ n a\perp n a⊥n 时,元素 a 必然而不是可能存在逆元。