乘模合数群,要想余数为1,则两数必须互质

前言:仅个人小记。为什么专门提一下这个性质? 1. 一个是这个定理本身有意;2. 另一个这里的"1"在“乘模合数群”中很有作用,是否能够取模得到 “1” 决定着是否存在 “逆元”,这一点在讨论群环域中很重要,为判定逆元存在提供了理论支撑。下面将详细讨论。

一、引入命题
白话语言

要想余数为1,则两数必须互质
或者说,如果两个数不互质,则这两个数余数必然不为 1。

数学语言

证明命题如下:

  1. 如果 a m o d    b = 1 , 则 a ⊥ b a\mod b=1,则a\perp b amodb=1ab
  2. 如果 a ⊥ ̸ b , 则 a m o d    b = ̸ 1 a\perp\not b,则a\mod b=\not 1 a̸bamodb≠1

以上1, 2 互为逆否命题,则必然两个命题等价,证明其中一个即可。

二、给出证明

证明:若对于正整数 a, b, a ⊥ ̸ b a\perp\not b a̸b,则必然 a m o d    b = ̸ 1 a \mod b =\not 1 amodb≠1
因为 a ⊥ ̸ b a\perp\not b a̸b所以

g c d ( a , b ) = ̸ 1 gcd(a,b)=\not 1 gcd(a,b)≠1则记

k = g c d ( a , b ) > 1 k=gcd(a,b)>1 k=gcd(a,b)>1则 a, b 可以表示为

a = k ′ ′ k , b = k ′ ′ ′ k , k ′ ′ 和 k ′ ′ ′ 为 整 数 a=k''k,b=k'''k,k''和k'''为整数 a=kk,b=kk,kk反证法开始:假设

a m o d    b = 1 a\mod b=1 amodb=1则有,

a = k ′ b + 1 , k ′ 为 整 数 a=k'b+1,k'为整数 a=kb+1,k进而将 a, b 的表示式子带入得到

k ′ ′ k = k ′ ( k ′ ′ ′ k ) + 1 k''k=k'(k'''k)+1 kk=k(kk)+1进而有

( k ′ ′ − k ′ k ′ ′ ′ ) k = 1 (k''-k'k''')k=1 (kkk)k=1显然,

( k ′ ′ − k ′ k ′ ′ ′ ) 为 整 数 , 又 k > 1 , 所 以 ( k ′ ′ − k ′ k ′ ′ ′ ) k = ̸ 1 (k''-k'k''')为整数,又k>1,所以(k''-k'k''')k=\not1 (kkk),k>1(kkk)k≠1

( k ′ ′ − k ′ k ′ ′ ′ ) k = 1 矛 盾 (k''-k'k''')k=1矛盾 (kkk)k=1故而假设不成立,进而必然有

g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1

a ⊥ b a\perp b ab

三、结合具体群论例子

G = &lt; { 1 , 2 , . . . , n − 1 } , ∗ &gt; G=&lt;\{1,2,...,n-1\},*&gt; G=<{1,2,...,n1},>,其中n 为合数,二元运算 * 定义为

∀ a , b ∈ G , a ∗ b = a b m o d &ThinSpace;&ThinSpace; n \forall a,b\in G,a*b=ab\mod n a,bG,ab=abmodn显然 G 满足封闭性、结合律、交换律以及存在幺元,故而 G 是一个交换幺半群。

我们想要探讨的是这个幺半群中哪些元素是存在逆元的 ?
逆元即,

∀ a ∈ G , 如 果 ∃ b ∈ G , 使 得 a b m o d &ThinSpace;&ThinSpace; n = 1 , 则 称 b 为 a 的 逆 元 \forall a\in G,如果\exist b\in G,使得ab\mod n=1,则称b为a的逆元 aGbG,使abmodn=1ba这里的余数为1就联系了上述的定理。此时,需求转为
找 到 能 够 使 得 a b m o d &ThinSpace;&ThinSpace; n = 1 成 立 的 b 找到能够使得ab\mod n=1成立的b 使abmodn=1b
根据上述定理知,要想 a b m o d &ThinSpace;&ThinSpace; n = 1 ab\mod n=1 abmodn=1成立,必须要 a b ⊥ n ab\perp n abn而要想 a b ⊥ n ab\perp n abn成立,则必然要有 a ⊥ n , b ⊥ n a\perp n,b\perp n an,bn
所以, a ⊥ n a\perp n an是 a 能够存在逆元的必要条件,即如果 a ⊥ n a\perp n an,a 才有可能是存在逆元的。

小结:借助了上面的定理,缩小了寻找可逆元素的范围。

四、群论例子进一步证明
前要知识
  1. 若正整数 a ⊥ b a\perp b ab,则必然存在正整数 k ∈ { 0 , 1 , . . . , b − 1 } , 使 得 a k % b = 1 k\in\{0,1,...,b-1\},使得ak\%b=1 k{0,1,...,b1}使ak%b=1. 参看 https://blog.csdn.net/qq_25847123/article/details/99953705

根据前要知识,显然,因为 a ⊥ n a\perp n an,所以必然存在 b ∈ { 0 , 1 , . . . , n − 1 } b\in\{0,1,...,n-1\} b{0,1,...,n1}使得 a b % n = 1 ab\%n=1 ab%n=1所以当 a ⊥ n a\perp n an 时,元素 a 必然而不是可能存在逆元。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值