多元线性回归模型-数学建模类-matlab详解

如果本文有点小难理解的话,可以看看我之前的基础线性规划啥的,有lingo,matlab还有python

就不给大家放链接了,想看的话,点击头像即可!!

文章目录

(1)一元线性回归之旧轿车价格案例

(2)多元线性回归之洞庭湖污染物案例实测

(3) 参考文档:


(1)一元线性回归之旧轿车价格案例

        以x表示使用年数,y表示相应的平均价格。根据表中x和y的数据,建立一个数据模型,分析就轿车平均价格与其使用念书之间的关系,即求y与x的关系。
        为了表示,x和y数据为:

x=1:10;
y=[2650,1942,1493,1086,766,539,485,291,224,202];

 代码:

clear all
clc

%绘图
x=1:10;
y=[2650,1942,1493,1086,766,539,485,291,224,202];
for i=1:10
    plot(x(i),y(i),'or');
    hold on
end

%命名x轴和y轴
xlabel('x');
ylabel('y');

 运行结果:

         分析返回的图我们发现,x和y呈现指数关系,于是我们令z=Iny,记作Zi=Inyi,

        重新绘图:

 代码:

clear all
clc

%绘图
x=1:10;
y=[2650,1942,1493,1086,766,539,485,291,224,202];
z=zeros(size(y));
N=length(y);
hold on
for i =1:N
    z(i)=log(y(i));
    plot(x(i),z(i),'ok');
end

%命名x轴和y轴
xlabel('x');
ylabel('y');

 运行结果:观察结果,是不是觉得比刚才拟合效果好多了

         经过分析:各点基本处于一条直线附近,可以认为z=a+bx+c
既然已经确定好了函数类型,就可以求解参数具体值。
 代码:

clear all
clc

x=1:10;
y=[2650,1942,1493,1086,766,539,485,291,224,202];
z=zeros(size(y));
N=length(y);
for i =1:N
    z(i)=log(y(i));
end
[p,s]=polyfit(x,z,1)

        运行结果:

        由此可以得出:a=8.1671,b=-0.2984,从而可以得到函数z=8.1671-0.2984x

(2)多元线性回归之洞庭湖污染物案例实测

        定义:如果有两个或者两个以上的自变量,成为多元回归。

在这之前我需要先讲一下regress函数使用,调用格式为:

[b,bint,r,rint,stats]=regress(y,x,alpha)

什么意思呢?

alpha为显著性水平,缺省设定为0.05,b表示为输出量,bint为回归系数估计值和他们的置信区间,r为残差,rint为置信区间,stats适用于检验回归模型的统计量。
举个例子吧,案例如下:

 代码:

%开始进行多元回归
clear all
clc

x1=[1.376,1.375,1.387,1.401,1.412,1.428,1.445,1.477];
x2=[0.450,0.475,0.485,0.5,0.535,0.545,0.55,0.575];
x3=[2.170,2.554,2.676,2.713,2.823,3.088,3.122,3.262];
x4=[5.19,1.161,0.5346,0.9589,2.0239,1.0499,1.1065,1.1387];
y=[5.19,5.3,5.6,5.82,6,6.06,6.45,6.95];
save data x1 x2 x3 x4 y%保存数据
load data %取出数据
y=[y'];
x=[ones(size(x1')),x1',x2',x3',x4'];

[b,bint,r,rint,stats]=regress(y,x)

 运行结果:

根据返回值b值,我们可以确定出函数关系式,水质分析模型为:

y=-20.5297+19.1269x1+8.0045x2-1.5867x3-0.1465x4

 (3) 参考文档:

多元线性回归 - MATLAB regress- MathWorks 中国

  • 10
    点赞
  • 102
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: Matlab是一种功能强大的数学软件,可以用于多元线性回归分析和数学建模。多元线性回归是一种统计分析方法,用于建立多个自变量与一个因变量之间的关系模型。在数学建模中,多元线性回归可以用于预测和解释变量之间的关系,通过分析数据集中的多个变量来理解其之间的相互作用。 在Matlab中,可以使用多个内置的函数和工具箱来进行多元线性回归分析和数学建模。首先,可以使用“polyfit”函数来拟合多元线性回归模型,并获得拟合的系数和截距。然后,可以使用“polyval”函数来根据模型和输入的自变量值来预测因变量的值。 此外,Matlab还提供了各种可视化工具,如散点图、线性回归图和残差图,以帮助分析和解释多元线性回归模型的结果。这些图形可以用于评估模型的拟合程度、检查残差是否满足模型假设,并识别离群值和异常观测。 在数学建模中,Matlab还可以用于确定最佳的自变量组合,以优化模型的拟合效果。使用工具箱中的特征选择函数,可以根据特定的准则选择最相关的自变量,从而减少模型中不必要的变量,提高模型的解释能力。 总而言之,Matlab是一种强大的工具,可用于多元线性回归分析和数学建模。它提供了各种函数和工具箱,可以用于拟合模型、预测因变量、可视化结果以及优化模型的变量选择。使用Matlab进行多元线性回归分析和数学建模,可以更好地理解变量之间的关系,并做出准确的预测和解释。 ### 回答2: Matlab作为一种强大的数学建模工具,可以通过多元线性回归分析对数学建模问题进行求解。多元线性回归分析是一种常用的统计方法,用于建立和分析多个自变量与一个因变量之间的线性关系模型。在数学建模中,我们通常需要根据给定的数据集合,通过多元线性回归分析求解最佳拟合模型。 在Matlab中,可以使用内置的regress函数来进行多元线性回归分析。首先,我们需要准备好所需的数据集合,并且将自变量和因变量分别存储在不同的向量中。然后,使用regress函数进行回归分析,输入自变量矩阵和因变量向量,即可得到回归系数以及其他统计结果。 通过多元线性回归分析,我们可以了解自变量数量与因变量之间的关系,进而可以预测和优化因变量的取值。此外,通过对回归系数的分析,我们还可以了解各自变量对因变量的重要性以及它们之间的相互关系。 总之,Matlab提供了强大的多元线性回归分析工具,可以帮助我们在数学建模中对问题进行求解和分析。它可以通过对数据的拟合来研究和预测因变量,从而为解决实际问题提供了有效的数学模型建立方法。 ### 回答3: Matlab是一种功能强大的数值计算和数据分析软件,可以广泛应用于多元线性回归分析和数学建模。多元线性回归分析是一种统计方法,用于探究多个自变量对一个因变量的影响。 在Matlab中,我们可以使用regress函数进行多元线性回归分析。该函数可以根据给定的自变量和因变量数据集,计算出回归模型的系数和相关统计量。 首先,我们需要将自变量和因变量的数据导入到Matlab中,可以使用矩阵或向量的形式存储数据。然后,通过调用regress函数,指定自变量和因变量的位置,即可进行回归分析。函数的输出结果包括回归系数、残差、决定系数等。 使用Matlab进行数学建模时,可以利用多元线性回归分析来构建模型。通过收集和整理相关数据,建立自变量和因变量之间的数学关系,在回归分析中确定最佳拟合的回归方程。这个建立的模型可以用来预测未知的因变量值,或者进行参数估计和假设检验等。 在数学建模中,Matlab提供了丰富的工具箱和函数,可以用于数据可视化、模型拟合、参数估计、误差分析等。例如,通过绘制回归模型的拟合曲线和残差图,可以对模型的准确性进行评估。此外,还可以使用交叉验证等方法来评估模型的预测能力。 总而言之,Matlab可以用于实现多元线性回归分析和数学建模。其强大的功能和灵活的编程环境使其成为进行数值计算和数据分析的理想工具,在科学研究和实际应用中得到了广泛的应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值