MATLAB基础教程(6)——使用matlab求解线性方程组

目录

今日任务:

一般方程:

方程组(目前仅讨论方程个数和未知数个数一样的情况):

额外知识 

咦,咋跑题了

左除和右除

今日总结:


今日任务:

在数学中经常遇见的一个问题就是方程求解,特别是线性代数中,很经常遇见线性方程组的求解问题,今天就来用Matlab来探讨线性方程组的求解问题。

一般方程:

一般来讲,我们看到的方程都是这个样式的:ax = b,其中a、b都是常数,很显然,这时候 x 的解就是b/a。

也就是说,我们拿后面的值除以前面的系数,即可得到解X。

方程组(目前仅讨论方程个数和未知数个数一样的情况):

刚刚我们讲的是一般方程,那推广到线性方程组,假设我们现在有个这样的方程:

\left\{\begin{matrix} 4x_{1} + x_{2} -2x_{3} = 1 \\2x_{1} + 2x_{2} + x_{3} = 2 \\3x_{1} + x_{2} - x_{3} = 3 \end{matrix}\right.

相信大家运用高中知识也能很快的求出这个方程的答案,但是,如果四阶?五阶甚至更高呢?不如转换为矩阵的方法。

根据线性代数的知识,我们可以得到这样一个增广矩阵:

\begin{bmatrix} 4 & 1 & -2 & 1\\ 2 & 2 & 1 & 2\\ 3 & 1 & -1 & 3 \end{bmatrix}

那我们令系数矩阵是A,结果矩阵是B,这个解矩阵X该怎么算呢?

额外知识 

此部分提供给还未学过线性代数的同学看,如果知道基本知识可以先行跳过。

上面的矩阵方程可以视为这样的矩阵方程:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值