如何快速入门大模型?写给小白的大模型技术学习路线!

技术学习无非涵盖三个方面,理论,实践和应用**”**

大模型技术爆火至今已经有两年的时间了,而且大模型技术的发展潜力也不言而喻。因此,很多人打算学习大模型,但又不知道该怎么入手,因此今天就来了解一下大模型的学习路线。‍‍

丁元英说:“透视社会有三个层面,技术,制度与文化”;同样的,技术学习同样有三个层面,理论,实践和应用,三者相辅相成,缺一不可。

技术的意义在于解决问题!

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

一、大模型技术学习的理论,实践与应用‍‍‍‍‍‍‍‍

学习大模型技术需要系统性的理论基础,实践技能以及最新的研究进展和应用场景。以下是一个大模型学习进阶路线,涵盖了理论,技术和应用等方面。‍‍‍‍‍‍‍‍‍‍‍‍‍‍

理论基础

大模型学习需要有一定的理论基础,特别是数学,机器学习,自然语言处理等方面。‍‍‍‍‍‍‍‍‍

数学与统计学

  • 线性代数:矩阵运算,特征值,奇异值分解等‍‍‍‍‍‍
  • 概率论和统计学:随机变量,概率分布,贝叶斯定理等‍‍‍‍
  • 微积分:偏导数,梯度下降,最优化等

机器学习基础

  • 监督学习:回归,分类,支持向量机等‍‍
  • 无监督学习:聚类,降维,主成分分析等‍‍‍‍‍‍‍‍‍
  • 深度学习基础:神经网络,反向传播,激活函数等‍

在这里插入图片描述

自然语言处理

语言模型:n-gram,Word2Vec,BERT,GPT等‍‍‍‍‍‍‍‍‍‍‍‍‍‍

序列模型:RNN,LSTM,Transformer等‍‍‍‍‍‍

大模型的核心‍‍

  • 预训练模型:理解什么是预训练及其在大模型中的应用
  • 自监督学习:掌握自监督学习的概念及其在预训练中的应用‍‍‍
  • 注意力机制:深入理解注意力机制及其在Transformer架构中的作用‍‍‍
  • 多模态学习:了解如何处理文本,图像,音视频等多模态数据‍‍

实践技能

编程语言‍‍

Python:python作为目前大模型主要的开发语言,熟悉python基础,Numpy,Pandas数据处理工具‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

深度学习框架

TensorFlow/PyTorch: 学习如何使用这些框架构建和训练深度学习模型‍‍

模型实现

从头实现:动手实现简单的神经网络,Transformer模型,理解模型结构和训练流程‍‍

迁移学习:使用预训练模型并进行微调,适应特定任务

在这里插入图片描述

大规模训练

分布式训练:学习如何在多GPU或多节点环境下进行模型训练‍‍‍‍‍

优化技术:理解学习率调度,梯度剪裁,模型压缩等技术

项目与实战

  • 构建项目:设计和实现一个完整的大模型项目,从数据准备到模型部署‍‍‍
  • 开源贡献:参与开源深度学习框架或大模型相关项目的开发,积累实战经验‍‍
  • 挑战赛:参加如Kaggle等平台的AI挑战赛,检验自己的技术水平‍‍‍‍‍‍‍‍‍

前沿技术

  • 生成式模型:深度研究生成式模型如GPT,DALL-E,Stable-Diffusion等‍‍‍
  • 多模态大模型:学习如果构建和训练多模态模型,处理图像,文本,音频等多种数据
  • 自监督学习:研究自监督学习的最新进展及其在大模型中的应用
  • 增强学习:了解增强学习在大模型中的应用,如RLHF(通过人类反馈进行强化学习)

实际应用‍‍‍‍‍

应用场景:探索大模型在自然语言处理,计算机视觉,语音识别等领域的应用‍‍‍

案例研究:分析ChatGPT,BERT,DALL-E等实际案例,理解大模型的应用细节‍‍‍‍‍‍‍

开源项目:参与开源项目或复现学术论文中的模型,提升实战能力‍‍‍‍

持续学习

大模型技术处于一个飞速发展的过程,今天合适的正确理论,或许明天就不是那么正确;今天的好方法或许明天就会有更合适的解决方案,因此持续学习是一个必不可少的技能。‍‍‍‍‍‍‍

阅读论文:关注顶会(如NeurlIPS,ICML,ACL等)等最新论文研究,了解前沿技术

总结与提升

经验总结:定期回顾学习过程,总结技术要点和实战经验

跨学科融合:探索大模型在其它领域(如金融,法律,医疗等)等应用,扩展知识广度‍

如果用一句话总结就是,学习——实践——再学习——再实践。

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 关于AI大模型学习资源和入门指南 对于希望进入AI大模型领域的新手而言,获取高质量的学习材料至关重要。一份详尽的基础教程能够帮助理解复杂的概念并提供实践指导[^2]。 #### 推荐的学习路径 - **理论基础**:掌握机器学习、深度学习的核心原理以及数学基础知识,如线性代数、概率论等。 - **工具和技术栈**:熟悉Python编程语言及其生态系统内的库,比如TensorFlow, PyTorch等框架;了解云计算平台提供的服务和支持。 - **项目实战**:参与开源社区贡献代码或完成个人项目来积累实际操作经验。尝试构建简单的神经网络,并逐步过渡到更复杂的大规模预训练模型的应用场景中去。 #### 获取优质教育资源的方式 为了便于初学者快速上手,这里特别推荐一些经过精心挑选的公开课程与文档: - **官方文档与博客**:阅读来自各大科技公司发布的技术博客文章,这些往往包含了最新的研究成果和发展趋势介绍[^1]。 - **在线教育平台**:Coursera、edX等网站提供了由顶尖大学教授讲授的相关课程,涵盖了从零开始直到高级主题的内容覆盖范围广泛。 - **社交网络交流群组**:加入LinkedIn、Reddit等相关论坛,在那里可以找到志同道合的人一起讨论问题、分享心得体验。 针对特定应用场景下的挑战——例如在嵌入式设备上的部署难题,则需额外关注轻量化架构设计思路及边缘计算解决方案的研究进展[^3]。 ```python import torch from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) print(output.last_hidden_state.shape) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值