目录
1.简介
主观赋权法(AHP)在根据决策者意图确定权重方面比客观赋权法(熵权法)具有更大的优势,但客观性相对较差,主观性相对较强;
而采用客观赋权法有着客观优势,但不能反映出参与决策者对不同指标重视程度,并且会有一定的权重和与实际指标相反的程度。
针对主客观赋权方法的优缺点,我们还力求将主观随机性控制在一定范围内,实现主客观赋权中的中正。客观方面。指标赋权公正,实现了主客观内在统一,评价结果真实、科学、可信。
因此,在对指标进行权重分配时,应考虑指标数据之间的内在统计规律和权威值。给出了合理的决策指标赋权方法,即采用主观赋权法(AHP)和客观赋权法(熵权法)相结合的组合赋权方法,以弥补单一赋权带来的不足。将两种赋权方法相结合的加权方法称为组合赋权法。
注意:本文所介绍的组合权重法请大家结合实际情况慎重使用,因为这个方法不太好
2.算法原理
2.1 指标正向化
这个步骤视情况自己决定把。。。。
不同的指标代表含义不一样,有的指标越大越好,称为越大越优型指标。有的指标越小越好,称为越小越优型指标,而有些指标在某个点是最好的,称为某点最优型指标。为方便评价,应把所有指标转化成越大越优型指标。
设有m个待评对象,n个评价指标,可以构成数据矩阵
设数据矩阵内元素,经过指标正向化处理过后的元素为 (Xij)'
-
越小越优型指标:C,D属于此类指标
其他处理方法也可,只要指标性质不变即可
-
某点最优型指标:E属于此类指标
设最优点为a, 当a=90时E最优。
其他处理方法也可,只要指标性质不变即可
-
越大越优型指标:其余所有指标属于此类指标
此类指标可以不用处理,想要处理也可,只要指标性质不变