博弈论 —— python

本文介绍了博弈论如何应用于电动车换电站的定价策略,通过双层博弈模型,公司调整价格以影响出租车在不同区域的分布,达到期望的电动车数量平衡。算法涉及司机的效用函数和公司的目标函数,通过迭代调整价格,最终实现动态均衡。实例展示了随机生成的出租车位置和换电站分布,以及价格调整和实际分布的比较,通过图表展示博弈过程和结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.简介

2.算法原理

3.实例分析

1.各参数初始化

2.计算期望与实际期望

3.博弈过程

4.绘图

 完整代码


1.简介

        博弈论又被称为对策论(Game Theory)既是现代数学的一个新分支,也是运筹学的一个重要学科。

        博弈论主要研究公式化了的激励结构间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。 博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。生物学家使用博弈理论来理解和预测进化论的某些结果。

        博弈论已经成为经济学的标准分析工具之一。在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。

        基本概念中包括局中人、行动、信息、策略、收益、均衡和结果等。其中局中人、策略和收益是最基本要素。局中人、行动和结果被统称为博弈规则

        博弈论简单讲就是,A采取措施影响B的行为,B的行为影响A的决策,两者来回博弈,最终达到一个动态平衡。博弈论严格来讲只是一种解题方式。

2.算法原理

        以电动出租车与换电站为例,假设电动出租车及换电站均属于同一家公司,公司想通过换电站价格定价措施去控制目标区域内的出租车数量达到预期分布。

        对于司机而言,有两个成本,一个是距离成本d,一个是支付成本p,支付成本即是换电池所支付的电价,我们可以设立权重因子a将两者合并构建为一个效用函数,司机会选择该函数最小的换电站更换电池,更换电池后司机一般会在周围开始接单

        对于公司而言,目标函数则是不同地区的出租车实际分布e与期望分布E的绝对差之和,公司通过调整价格去影响司机的选择,从而调整司机在不同区域的分布

双层博弈论的模型分析

①第一阶段,充电站统计出各电动出租车的换电请求后,根据优化目标,制定价格策略

②第二阶段,电动出租车根据自身效用函数从所有换电站中选择出目标换电站进行跟换电池

③第一阶段和第二阶段交替往复进行,直到达到均衡

算法设计步骤

3.实例分析

1.各参数初始化

n=900 #换电需求数
min_price=170
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值