(4) OpenCV图像处理SVM算法

16 篇文章 0 订阅 ¥89.90 ¥99.00
本文介绍了使用OpenCV实现SVM图像分类的方法。通过寻找最优的决策边界,SVM能够处理线性可分离数据,并利用支撑向量进行训练。文章详细讲解了如何对图像进行预处理、提取特征,并应用SVM进行手写数字识别,以此评估模型的准确性。
摘要由CSDN通过智能技术生成

一、介绍

        考虑下面的图像,它具有两种数据类型,红色和蓝色。我们找到一条线f(x)=ax1+bx2+cf(x)=ax1+bx2+c,它将两条数据都分为两个区域。当我们得到一个新的test_data XX时,只需将其替换为f(x)f(x)即可。如果f(X)>0f(X)>0,则属于蓝色组,否则属于红色组。我们可以将此行称为“决策边界”。它非常简单且内存高效。可以将这些数据用直线(或高维超平面)一分为二的数据称为**线性可分离**数据。

        因此,在上图中,你可以看到很多这样的行都是可能的。我们会选哪一个?非常直观地,我们可以说直线应该从所有点尽可能远地经过。为什么?因为传入的数据中可能会有噪音。此数据不应影响分类准确性。因此,走最远的分离线将提供更大的抗干扰能力。因此,SVM要做的是找到到训练样本的最小距离最大的直线(或超平面)。请参阅下面图像中穿过中心的粗线。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq_755682240

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值