随机变量分布模型的数字特征
公式速览
- 随机变量分布模型的数字特征
- 离散型
- 连续型
离散型
分布律
P
(
X
=
x
i
)
=
p
i
P(X=x_i)=p_i
P(X=xi)=pi
均值
E
(
X
)
=
∑
i
x
i
p
i
E(X)=\sum_{i}x_ip_i
E(X)=i∑xipi
方差
D
(
X
)
=
∑
i
(
x
i
−
E
(
X
)
)
2
=
E
(
X
2
)
−
E
2
(
X
)
D(X)=\sum_{i}(x_i-E(X))^2=E(X^2)-E^2(X)
D(X)=i∑(xi−E(X))2=E(X2)−E2(X)
两点分布 X ∼ B ( 1 , p ) X\sim B(1,p) X∼B(1,p)
分布律 P ( X = k ) = p k ( 1 − p ) 1 − k , k = 0 , 1 P(X=k)=p^k(1-p)^{1-k},k=0,1 P(X=k)=pk(1−p)1−k,k=0,1
均值 E ( X ) = p E(X)=p E(X)=p
E ( X ) = 0 × ( 1 − p ) + 1 × p = p E(X)=0\times (1-p)+1\times p=p E(X)=0×(1−p)+1×p=p
均值 D ( X ) = p ( 1 − p ) D(X)=p(1-p) D(X)=p(1−p)
方均值
E ( X 2 ) = 0 2 ( 1 − p ) + 1 2 × p = p E(X^2)=0^2(1-p)+1^2\times p=p E(X2)=02(1−p)+12×p=p
方差
D ( X ) = E ( X 2 ) − E 2 ( X ) = p − p 2 = p ( 1 − p ) D(X)=E(X^2)-E^2(X)=p-p^2=p(1-p) D(X)=E(X2)−E2(X)=p−p2=p(1−p)
二项分布 X ∼ B ( n , p ) X\sim B(n,p) X∼B(n,p)
分布律 P ( X = k ) = C n k p k q n − k , q + p = 1 , k = 0 , 1 , 2 , . . . P(X=k)=C_n^kp^kq^{n-k},q+p=1,k=0,1,2,... P(X=k)=Cnkpkqn−k,q+p=1,k=0,1,2,...
均值 E ( X ) = n p E(X)=np E(X)=np
证明:
1.n次独立重复实验,每次成功概率为p,视为每次成功了p个实验,那么n次就成功了np个实验
2.更严谨的证明
E ( X ) = ∑ k = 0 n k p k = ∑ k = 0 n k C n k p k q n − k = ∑ k = 0 n k n ! k ! ( n − k ) ! p k q n − k = n p ∑ k = 1 n ( n − 1 ) ! ( k − 1 ) ! ( ( n − 1 ) − ( k − 1 ) ) ! p k − 1 q ( n − 1 ) − ( k − 1 ) = n p ∑ k = 1 n C n − 1 k p k − 1 q ( n − 1 ) − ( k − 1 ) = n p ( p + q ) n − 1 / / 二 项 展 开 式 逆 用 = n p 1 n − 1 = n p \begin{aligned} E(X)&=\sum_{k=0}^nkp_k\\ &=\sum_{k=0}^nkC_n^kp^kq^{n-k}\\ &=\sum_{k=0}^nk\frac{n!}{k!(n-k)!}p^kq^{n-k}\\ &=np\sum_{k=1}^n\frac{(n-1)!}{(k-1)!((n-1)-(k-1))!}p^{k-1}q^{(n-1)-(k-1)}\\ &=np\sum_{k=1}^nC_{n-1}^kp^{k-1}q^{(n-1)-(k-1)}\\ &=np(p+q)^{n-1}//二项展开式逆用\\ &=np1^{n-1}\\ &=np \end{aligned} E(X)=k=0∑nkpk=k=0∑nkCnkpkqn−k=k=0∑nkk!(n−k)!n!pkqn−k=npk=1∑n(k−1)!((n−1)−(k−1))!(n−1)!pk−1q(n−1)−(k−1)=npk=1∑nCn−1kpk−1q(n−1)−(k−1)=np(p+q)n−1//二项展开式逆用=np1n−1=np
方差 D ( X ) = n p q D(X)=npq D(X)=npq
证明:
方均值:
E ( X 2 ) = E ( X ( X − 1 ) + X ) = E ( X ( X − 1 ) ) + E ( X ) E(X^2)=E(X(X-1)+X)=E(X(X-1))+E(X) E(X2)=E(X(X−1)+X)=E(X(X−1))+E(X)
问题转化为求 E ( X ( X − 1 ) ) E(X(X-1)) E(X(X−1))
E ( X ( X − 1 ) ) = ∑ k = 1 n k ( k − 1 ) p k = ∑ k = 1 n k ( k − 1 ) C n k p k q n − k = ∑ k = 1 n k ( k − 1 ) n ! k ! ( n − k ) ! p k q n − k = n ( n − 1 ) p 2 ∑ k = 2 n ( n − 2 ) ! ( k − 2 ) ! ( ( n − 2 ) − ( k − 2 ) ) ! p k − 2 q ( n − 2 ) − ( k − 2 ) = n ( n − 1 ) p 2 ∑ k = 2 n C n − 2 k p k − 2 q ( n − 2 ) − ( k − 2 ) = n ( n − 1 ) p 2 ( p + q ) n − 2 = n ( n − 1 ) p 2 \begin{aligned} E(X(X-1))&=\sum_{k=1}^nk(k-1)p_k\\ &=\sum_{k=1}^nk(k-1)C_n^kp^kq^{n-k}\\ &=\sum_{k=1}^nk(k-1)\frac{n!}{k!(n-k)!}p^kq^{n-k}\\ &=n(n-1)p^2\sum_{k=2}^n\frac{(n-2)!}{(k-2)!((n-2)-(k-2))!}p^{k-2}q^{(n-2)-(k-2)}\\ &=n(n-1)p^2\sum_{k=2}^nC_{n-2}^kp^{k-2}q^{(n-2)-(k-2)}\\ &=n(n-1)p^2(p+q)^{n-2}\\ &=n(n-1)p^2 \end{aligned} E(X(X−1))=k=1∑nk(k−1)pk=k=1∑nk(k−1)Cnkpkqn−k=k=1∑nk(k−1)k!(n−k)!n!pkqn−k=n(n−1)p2k=2∑n(k−2)!((n−2)−(k−2))!(n−2)!pk−2q(n−2)−(k−2)=n(n−1)p2k=2∑nCn−2kpk−2q(n−2)−(k−2)=n(n−1)p2(p+q)n−2=n(n−1)p2
那么方均值为 E ( X 2 ) = E ( X ( X − 1 ) ) + E ( X ) = n ( n − 1 ) p 2 + n p = n 2 − n p 2 + n p E(X^2)=E(X(X-1))+E(X)=n(n-1)p^2+np=n^2-np^2+np E(X2)=E(X(X−1))+E(X)=n(n−1)p2+np=n2−np2+np
那么方差 D ( X ) = E ( X 2 ) − E 2 ( X ) = ( n ( n − 1 ) − n 2 ) p 2 + n p = n p ( 1 − p ) = n p q D(X)=E(X^2)-E^2(X)=(n(n-1)-n^2)p^2+np=np(1-p)=npq D(X)=E(X2)−E2(X)=(n(n−1)−n2)p2+np=np(1−p)=npq
泊松分布 X ∼ P ( λ ) X\sim P(\lambda) X∼P(λ)
分布律 P ( X = k ) = λ k k ! e − λ , λ > 0 , k = 0 , 1 , 2 , . . . P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda},\lambda>0,k=0,1,2,... P(X=k)=k!λke−λ,λ>0,k=0,1,2,...
均值 E ( X ) = λ E(X)=\lambda E(X)=λ
E ( X ) = e − λ ∑ k = 0 k λ k k ! = λ e − λ ∑ k = 1 λ k − 1 ( k − 1 ) ! = λ e − λ ∑ k = 0 λ k k ! \begin{aligned} E(X)&=e^{-\lambda}\sum_{k=0}k\frac{\lambda ^k}{k!}\\ &=\lambda e^{-\lambda}\sum_{k=1}\frac{\lambda^{k-1}}{(k-1)!}\\ &=\lambda e^{-\lambda}\sum_{k=0}\frac{\lambda^{k}}{k!} \end{aligned} E(X)=e−λk=0∑kk!λk=λe−λk=1∑(k−1)!λk−1=λe−λk=0∑k!λk
y = e x y=e^x y=ex的麦克劳林展开式为 e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + . . . = ∑ i = 0 n x i i ! e^x=1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+...=\sum_{i=0}^n\frac{x^i}{i!} ex=1+x+2!1x2+3!1x3+...=i=0∑ni!xi
故 ∑ k = 0 λ k k ! = e λ \sum_{k=0}\frac{\lambda^{k}}{k!}=e^\lambda k=0∑k!λk=eλ
那么均值为 E ( X ) = λ e − λ ∑ k = 0 λ k k ! = λ E(X)=\lambda e^{-\lambda}\sum_{k=0}\frac{\lambda^{k}}{k!}=\lambda E(X)=λe−λ∑k=0k!λk=λ
方差 D ( X ) = λ D(X)=\lambda D(X)=λ
观察到分布律分母上为 k ! k! k!,直接求方均值不容易求,但是利用二项分布求错位均值的思想可以维持分母的阶乘形式
E ( X ( X − 1 ) ) = e − λ ∑ k = 1 k ( k − 1 ) λ k k ! = λ 2 e − λ ∑ k = 2 λ k − 2 ( k − 2 ) ! = λ 2 e − λ ∑ k = 0 e k k ! = λ 2 e − λ e λ = λ 2 \begin{aligned} E(X(X-1))&=e^{-\lambda}\sum_{k=1}k(k-1)\frac{\lambda^k}{k!}\\ &=\lambda^2e^{-\lambda}\sum_{k=2}\frac{\lambda^{k-2}}{(k-2)!}\\ &=\lambda^2e^{-\lambda}\sum_{k=0}\frac{e^k}{k!}\\ &=\lambda^2e^{-\lambda}e^{\lambda}\\ &=\lambda ^2 \end{aligned} E(X(X−1))=e−λk=1∑k(k−1)k!λk=λ2e−λk=2∑(k−2)!λk−2=λ2e−λk=0∑k!ek=λ2e−λeλ=λ2
则方均值为 E ( X 2 ) = E ( X ( X − 1 ) ) + E ( X ) = λ 2 + λ E(X^2)=E(X(X-1))+E(X)=\lambda^2+\lambda E(X2)=E(X(X−1))+E(X)=λ2+λ
方差为 D ( X ) = E ( X 2 ) − E 2 ( X ) = λ D(X)=E(X^2)-E^2(X)=\lambda D(X)=E(X2)−E2(X)=λ
几何分布 X ∼ G E ( p ) X\sim GE(p) X∼GE(p)
分布律 P ( X = k ) = q k − 1 p ( k = 1 , 2 , . . . , p + q = 1 ) P(X=k)=q^{k-1}p\ \ \ \ (k=1,2,...,p+q=1) P(X=k)=qk−1p (k=1,2,...,p+q=1)
均值 E ( X ) = 1 p E(X)=\frac{1}{p} E(X)=p1
E ( X ) = p ∑ k = 1 k q k − 1 E(X)=p\sum_{k=1}kq^{k-1} E(X)=pk=1∑kqk−1
令生成函数 f n ( x ) f_n(x) fn(x)为:
f n ( x ) = ∑ n n x n − 1 f_n(x)=\sum_{n}nx^{n-1} fn(x)=n∑nxn−1其中 0 < x < 1 0<x<1 0<x<1
则 ∫ f n ( x ) d x = ∑ n x n = 1 ( 1 − x n ) 1 − x = 1 1 − x ( 当 0 < x < 1 , lim n → ∞ x n = 0 ) \int f_n(x)dx=\sum_nx^n=\frac{1(1-x^n)}{1-x}=\frac{1}{1-x}(当0<x<1,\lim_{n\rightarrow \infin }x^n=0) ∫fn(x)dx=n∑xn=1−x1(1−xn)=1−x1(当0<x<1,n→∞limxn=0)
那么 f n ( x ) = ( ∫ f n ( x ) d x ) ′ = ( 1 1 − x ) ′ = 1 ( 1 − x ) 2 f_n(x)=(\int f_n(x)dx)'=(\frac{1}{1-x})'=\frac{1}{(1-x)^2} fn(x)=(∫fn(x)dx)′=(1−x1)′=(1−x)21
令 x = q x=q x=q得到:
f n ( q ) = ∑ n n q n − 1 = 1 ( 1 − q ) 2 = 1 p 2 f_n(q)=\sum_nnq^{n-1}=\frac{1}{(1-q)^2}=\frac{1}{p^2} fn(q)=n∑nqn−1=(1−q)21=p21
故 E ( X ) = p ∑ k = 1 k q k − 1 = p × 1 p 2 = 1 p E(X)=p\sum_{k=1}kq^{k-1}=p\times\frac{1}{p^2}=\frac{1}{p} E(X)=pk=1∑kqk−1=p×p21=p1
方差 D ( X ) = 1 − p p 2 D(X)=\frac{1-p}{p^2} D(X)=p21−p
E ( ( X + 1 ) X ) = p ∑ k = 0 ( k + 1 ) k q k − 1 E((X+1)X)=p\sum_{k=0}(k+1)kq^{k-1} E((X+1)X)=pk=0∑(k+1)kqk−1
令生成函数 f n ( x ) = ∑ n ( n + 1 ) n x n − 1 f_n(x)=\sum_n(n+1)nx^{n-1} fn(x)=n∑(n+1)nxn−1
则 ∫ f n ( x ) d x = ∫ ( ∑ n ( n + 1 ) n x n − 1 ) d x = ∑ n ∫ ( n + 1 ) n x n − 1 d x = ∑ n ( n + 1 ) x n \int f_n(x)dx=\int (\sum_{n}(n+1)nx^{n-1})dx=\sum_n\int(n+1)nx^{n-1}dx=\sum_{n}(n+1)x^n ∫fn(x)dx=∫(n∑(n+1)nxn−1)dx=n∑∫(n+1)nxn−1dx=n∑(n+1)xn
∫ ( ∫ f n ( x ) d x ) d x = ∑ n x n + 1 = x ( 1 − x n ) 1 − x = x 1 − x \begin{aligned} \int(\int f_n(x)dx)dx&=\sum_nx^{n+1}\\ &=\frac{x(1-x^n)}{1-x}\\ &=\frac{x}{1-x} \end{aligned} ∫(∫fn(x)dx)dx=n∑xn+1=1−xx(1−xn)=1−xx
∫ f n ( x ) d x = ( x 1 − x ) ′ = 1 ( 1 − x ) 2 \int f_n(x)dx=(\frac{x}{1-x})'=\frac{1}{(1-x)^2} ∫fn(x)dx=(1−xx)′=(1−x)21
f n ( x ) = ( 1 ( 1 − x ) 2 ) ′ = − 2 ( x − 1 ) 3 = 2 ( 1 − x ) 3 f_n(x)=(\frac{1}{(1-x)^2})'=-\frac{2}{(x-1)^3}=\frac{2}{(1-x)^3} fn(x)=((1−x)21)′=−(x−1)32=(1−x)32
令 x = q x=q x=q得到:
f n ( q ) = ∑ k ( k + 1 ) k q k − 1 = 2 ( 1 − q ) 3 = 2 p 3 f_n(q)=\sum_k(k+1)kq^{k-1}=\frac{2}{(1-q)^3}=\frac{2}{p^3} fn(q)=k∑(k+1)kqk−1=(1−q)32=p32E ( ( X + 1 ) X ) = p ∑ k = 0 ( k + 1 ) k q k − 1 = 2 p p 3 = 2 p 2 E((X+1)X)=p\sum_{k=0}(k+1)kq^{k-1}=\frac{2p}{p^3}=\frac{2}{p^2} E((X+1)X)=pk=0∑(k+1)kqk−1=p32p=p22
E ( X 2 ) = E ( ( X + 1 ) X ) − E ( X ) = 2 p 2 − 1 p E(X^2)=E((X+1)X)-E(X)=\frac{2}{p^2}-\frac{1}{p} E(X2)=E((X+1)X)−E(X)=p22−p1
D ( X ) = E ( X 2 ) − E 2 ( X ) = ( 2 p 2 − 1 p ) − 1 p 2 = 1 − p p 2 D(X)=E(X^2)-E^2(X)=(\frac{2}{p^2}-\frac{1}{p})-\frac{1}{p^2}=\frac{1-p}{p^2} D(X)=E(X2)−E2(X)=(p22−p1)−p21=p21−p
超几何分布 X ∼ H ( n , M , N ) X\sim H(n,M,N) X∼H(n,M,N)
分布律 P ( X = k ) = C M k C N − M n − k C N n , k = 0 , 1 , . . . , m i n ( M , n ) P(X=k)=\frac{C_M^kC_{N-M}^{n-k}}{C_N^n},k=0,1,...,min(M,n) P(X=k)=CNnCMkCN−Mn−k,k=0,1,...,min(M,n)
意义:N个球中有M个黑球,N-M个红球,从中随意挑出n个不放回,挑出k个黑球的概率
均值 E ( X ) = n M N E(X)=\frac{nM}{N} E(X)=NnM
首先证明一个引理:
C n k = n k C n − 1 k − 1 C_n^k=\frac{n}{k}C_{n-1}^{k-1} Cnk=knCn−1k−1
证明:
左 侧 = C n k = n ! k ! ( n − k ) ! = n k ( n − 1 ) ! ( k − 1 ) ! ( ( n − 1 ) − ( k − 1 ) ) ! = n k C n − 1 k − 1 = 右 侧 左侧=C_{n}^k=\frac{n!}{k!(n-k)!}=\frac{n}{k}\frac{(n-1)!}{(k-1)!((n-1)-(k-1))!}=\frac{n}{k}C_{n-1}^{k-1}=右侧 左侧=Cnk=k!(n−k)!n!=kn(k−1)!((n−1)−(k−1))!(n−1)!=knCn−1k−1=右侧
该引理在证明超几何分布均值中的应用
令 m = m i n ( M , n ) m=min(M,n) m=min(M,n)即每次模球时保证有黑球
E ( X ) = ∑ k = 0 m k p k = ∑ k = 0 m k C M k C N − M n − k C N n = ∑ k = 1 m k M k C M − 1 k − 1 C ( N − 1 ) − ( M − 1 ) ( n − 1 ) − ( k − 1 ) N n C N − 1 n − 1 = n M N ∑ k = 1 m C M − 1 k − 1 C ( N − 1 ) − ( M − 1 ) ( n − 1 ) − ( k − 1 ) C N − 1 n − 1 = n M N ∑ k = 0 m − 1 p k ( 从 M − 1 个 黑 球 , N − M 个 红 球 中 挑 出 n 个 不 放 回 , 黑 球 数 为 1 , 2 , . . . , M − 1 的 全 概 率 显 然 为 1 ) = n M N \begin{aligned} E(X)&=\sum_{k=0}^mkp_k\\ &=\sum_{k=0}^mk\frac{C_M^kC_{N-M}^{n-k}}{C_N^n}\\ &=\sum_{k=1}^{m}k\frac{\frac{M}{k}C_{M-1}^{k-1}C_{(N-1)-(M-1)}^{(n-1)-(k-1)}}{\frac{N}{n}C_{N-1}^{n-1}}\\ &=\frac{nM}{N}\sum_{k=1}^m\frac{C_{M-1}^{k-1}C_{(N-1)-(M-1)}^{(n-1)-(k-1)}}{C_{N-1}^{n-1}}\\ &=\frac{nM}{N}\sum_{k=0}^{m-1}p_k(从M-1个黑球,N-M个红球中挑出n个不放回,黑球数为1,2,...,M-1的全概率显然为1)\\ &=\frac{nM}{N} \end{aligned} E(X)=k=0∑mkpk=k=0∑mkCNnCMkCN−Mn−k=k=1∑mknNCN−1n−1kMCM−1k−1C(N−1)−(M−1)(n−1)−(k−1)=NnMk=1∑mCN−1n−1CM−1k−1C(N−1)−(M−1)(n−1)−(k−1)=NnMk=0∑m−1pk(从M−1个黑球,N−M个红球中挑出n个不放回,黑球数为1,2,...,M−1的全概率显然为1)=NnM
连续型
设概率密度函数为
f
(
x
)
f(x)
f(x)
E
(
X
)
=
∫
−
∞
+
∞
x
f
(
x
)
d
x
E(X)=\int_{-\infin}^{+\infin}xf(x)\,dx
E(X)=∫−∞+∞xf(x)dx
D ( X ) = ∫ − ∞ + ∞ ( x − E ( X ) ) 2 f ( x ) d x D(X)=\int_{-\infin}^{+\infin}(x-E(X))^2f(x)\,dx D(X)=∫−∞+∞(x−E(X))2f(x)dx
均匀分布 X ∼ U ( a , b ) X\sim U(a,b) X∼U(a,b)
概率密度: f ( x ) = { 1 b − a , a < x ≤ b 0 , x ≤ a 或 x > b f(x)=\begin{cases}\frac{1}{b-a},a<x≤b\\0,x≤a或x>b\end{cases} f(x)={b−a1,a<x≤b0,x≤a或x>b
均值 E ( X ) = a + b 2 E(X)=\frac{a+b}{2} E(X)=2a+b
E ( X ) = ∫ a b x b − a d x = a + b 2 E(X)=\int _{a}^{b}\frac{x}{b-a}\,dx=\frac{a+b}{2} E(X)=∫abb−axdx=2a+b
方差 D ( X ) = ( b − a ) 2 12 D(X)=\frac{(b-a)^2}{12} D(X)=12(b−a)2
D ( X ) = ∫ a b ( x − a + b 2 ) 2 1 b − a d x = ( b − a ) 2 12 D(X)=\int_{a}^{b}(x-\frac{a+b}{2})^2\frac{1}{b-a}\,dx=\frac{(b-a)^2}{12} D(X)=∫ab(x−2a+b)2b−a1dx=12(b−a)2
正态分布 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) X∼N(μ,σ2)
概率密度 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , − ∞ < x < + ∞ f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}},-\infin<x<+\infin f(x)=2πσ1e−2σ2(x−μ)2,−∞<x<+∞
均值 E ( X ) = μ E(X)=\mu E(X)=μ
E ( X ) = 1 2 π σ ∫ − ∞ + ∞ x e − ( x − μ ) 2 2 σ 2 d x = 1 2 π σ ( − σ 2 ∫ − ∞ + ∞ d ( e − ( x − μ ) 2 2 σ 2 ) + μ ∫ − ∞ + ∞ e − t 2 2 σ 2 d t ) = μ 2 π σ ∫ − ∞ + ∞ e − t 2 2 σ 2 d t \begin{aligned} E(X)&=\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infin}^{+\infin}xe^{-\frac{(x-\mu)^2}{2\sigma^2}}\,dx\\ &=\frac{1}{\sqrt{2\pi}\sigma}(-\sigma^2\int_{-\infin}^{+\infin}d(e^{-\frac{(x-\mu)^2}{2\sigma^2}})+\mu\int_{-\infin}^{+\infin}e^{-\frac{t^2}{2\sigma^2}}dt)\\ &=\frac{\mu}{\sqrt{2\pi}\sigma}\int_{-\infin}^{+\infin}e^{-\frac{t^2}{2\sigma ^2}dt} \end{aligned} E(X)=2πσ1∫−∞+∞xe−2σ2(x−μ)2dx=2πσ1(−σ2∫−∞+∞d(e−2σ2(x−μ)2)+μ∫−∞+∞e−2σ2t2dt)=2πσμ∫−∞+∞e−2σ2t2dt
∫ − ∞ + ∞ e a x 2 d x = ( ∫ − ∞ + ∞ e a x 2 d x ) 2 = ∫ − ∞ + ∞ e a x 2 d x ∫ − ∞ + ∞ e a y 2 d y = ∬ e a ( x 2 + y 2 ) d x d y = ∫ 0 2 π d θ ∫ 0 ∞ e a ρ 2 ρ d ρ = π ∫ 0 ∞ e a ρ 2 d ρ 2 = π a ∫ 0 ∞ d e a ρ 2 \begin{aligned} &\int_{-\infin}^{+\infin}e^{ax^2}dx\\ &=\sqrt{(\int_{-\infin}^{+\infin}e^{ax^2}dx)^2}\\ &=\sqrt{\int_{-\infin}^{+\infin}e^{ax^2}dx\int_{-\infin}^{+\infin}e^{ay^2}dy}\\ &=\sqrt{\iint e^{a(x^2+y^2)}dxdy}\\ &=\sqrt{\int_{0}^{2\pi}d\theta \int_0^{\infin}e^{a\rho^2}\rho d\rho}\\ &=\sqrt{\pi\int_0^{\infin}e^{a\rho^2}d\rho^2}\\ &=\sqrt{\frac{\pi}{a}\int_0^{\infin}de^{a\rho^2}} \end{aligned} ∫−∞+∞eax2dx=(∫−∞+∞eax2dx)2=∫−∞+∞eax2dx∫−∞+∞eay2dy=∬ea(x2+y2)dxdy=∫02πdθ∫0∞eaρ2ρdρ=π∫0∞eaρ2dρ2=aπ∫0∞deaρ2
当 a < 0 a<0 a<0得到 − π a \sqrt{-\frac{\pi}{a}} −aπ
令 a = − 1 2 σ 2 a=-\frac{1}{2\sigma^2} a=−2σ21得到:
∫ − ∞ + ∞ e − 1 2 σ 2 x 2 d x = − π × ( − 2 σ 2 ) = 2 π σ \int _{-\infin}^{+\infin}e^{-\frac{1}{2\sigma^2}x^2}dx=\sqrt{-\pi\times(-2\sigma^2)}=\sqrt{2\pi}\sigma ∫−∞+∞e−2σ21x2dx=−π×(−2σ2)=2πσ
E ( X ) = μ 2 π σ ∫ − ∞ + ∞ e − t 2 2 σ 2 d t = μ \begin{aligned} E(X)&=\frac{\mu}{\sqrt{2\pi}\sigma}\int_{-\infin}^{+\infin}e^{-\frac{t^2}{2\sigma ^2}dt}=\mu \end{aligned} E(X)=2πσμ∫−∞+∞e−2σ2t2dt=μ
方差 D ( X ) = σ 2 D(X)=\sigma^2 D(X)=σ2
D ( X ) = E ( ( X − E ( X ) ) 2 ) = ∫ − ∞ + ∞ ( x − μ ) 2 f ( x ) d x = ∫ − ∞ + ∞ ( x − μ ) 2 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x \begin{aligned} D(X)&=E((X-E(X))^2)\\ &=\int_{-\infin}^{+\infin}(x-\mu)^2f(x)dx\\ &=\int_{-\infin}^{+\infin}(x-\mu)^2\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx \end{aligned} D(X)=E((X−E(X))2)=∫−∞+∞(x−μ)2f(x)dx=∫−∞+∞(x−μ)22πσ1e−2σ2(x−μ)2dx
令 t = x − μ σ t=\frac{x-\mu}{\sigma} t=σx−μ
∫ − ∞ + ∞ ( x − μ ) 2 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x = 1 2 π σ ∫ − ∞ + ∞ σ 2 t 2 e − t 2 2 σ d t = σ 2 2 π ∫ − ∞ + ∞ t 2 e − t 2 2 d t = σ 2 2 π ∫ − ∞ + ∞ t 2 e − t 2 2 d t 2 = − σ 2 2 π ∫ − ∞ + ∞ t d ( e − t 2 2 ) = − σ 2 2 π ( t d − t 2 2 ∣ − ∞ + ∞ − ∫ − ∞ + ∞ e − t 2 2 d t ) = σ 2 2 π ∫ − ∞ + ∞ e − t 2 2 d t \begin{aligned} &\int_{-\infin}^{+\infin}(x-\mu)^2\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx\\ &=\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infin}^{+\infin}\sigma^2t^2e^{-\frac{t^2}{2}}\sigma dt\\ &=\frac{\sigma^2}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}t^2e^{-\frac{t^2}{2}}dt\\ &=\frac{\sigma^2}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}\frac{t}{2}e^{-\frac{t^2}{2}}dt^2\\ &=-\frac{\sigma^2}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}td(e^{-\frac{t^2}{2}})\\ &=-\frac{\sigma^2}{\sqrt{2\pi}}(td^{-\frac{t^2}{2}}|_{-\infin}^{+\infin}-\int_{-\infin}^{+\infin}e^{-\frac{t^2}{2}}dt)\\ &=\frac{\sigma^2}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{t^2}{2}}dt \end{aligned} ∫−∞+∞(x−μ)22πσ1e−2σ2(x−μ)2dx=2πσ1∫−∞+∞σ2t2e−2t2σdt=2πσ2∫−∞+∞t2e−2t2dt=2πσ2∫−∞+∞2te−2t2dt2=−2πσ2∫−∞+∞td(e−2t2)=−2πσ2(td−2t2∣−∞+∞−∫−∞+∞e−2t2dt)=2πσ2∫−∞+∞e−2t2dt
又
∫ − ∞ + ∞ e a x 2 d x = π a ∫ 0 ∞ d e a ρ 2 = = − π a , a < 0 \begin{aligned} &\int_{-\infin}^{+\infin}e^{ax^2}dx=\sqrt{\frac{\pi}{a}\int_0^{\infin}de^{a\rho^2}}= \end{aligned}=\sqrt{-\frac{\pi}{a}},a<0 ∫−∞+∞eax2dx=aπ∫0∞deaρ2==−aπ,a<0
令 a = − 1 2 a=-\frac{1}{2} a=−21得到
∫ − ∞ + ∞ e − t 2 2 d t = − π × ( − 2 ) = 2 π \int_{-\infin}^{+\infin}e^{-\frac{t^2}{2}}dt=\sqrt{-\pi\times(-2)}=\sqrt{2\pi} ∫−∞+∞e−2t2dt=−π×(−2)=2π
故方差为
D ( X ) = σ 2 2 π ∫ − ∞ + ∞ e − t 2 2 d t = σ 2 D(X)=\frac{\sigma^2}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{t^2}{2}}dt=\sigma^2 D(X)=2πσ2∫−∞+∞e−2t2dt=σ2
指数分布 X ∼ E ( λ ) X\sim E(\lambda) X∼E(λ)
概率密度 f ( x ) = { λ e − λ x , x ≥ 0 0 , x < 0 f(x)=\begin{cases}\lambda e^{-\lambda x},x≥0\\0,x<0\end{cases} f(x)={λe−λx,x≥00,x<0
均值 E ( X ) = 1 λ E(X)=\frac{1}{\lambda} E(X)=λ1
E ( X ) = λ ∫ 0 + ∞ x e − λ x d x E(X)=\lambda\int_{0}^{+\infin}xe^{-\lambda x}dx\\ E(X)=λ∫0+∞xe−λxdx
令 t = − λ x t=-\lambda x t=−λx
E ( X ) = − 1 λ ∫ − ∞ 0 t e t d t = − 1 λ ( t − 1 ) e t ∣ − ∞ 0 = 1 λ \begin{aligned} E(X)&=-\frac{1}{\lambda}\int_{-\infin}^0 te^t\,dt\\ &=-\frac{1}{\lambda}(t-1)e^t|_{-\infin}^0\\ &=\frac{1}{\lambda} \end{aligned} E(X)=−λ1∫−∞0tetdt=−λ1(t−1)et∣−∞0=λ1
方差 D ( X ) = 1 λ 2 D(X)=\frac{1}{\lambda^2} D(X)=λ21
方均值
E ( X 2 ) = λ ∫ 0 + ∞ x 2 e − λ x d x = 1 λ 2 ∫ − ∞ 0 t 2 e t d t = 1 λ 2 ( t 2 − 2 t + 2 ) e t ∣ − ∞ 0 = 2 λ 2 E(X^2)=\lambda\int_0^{+\infin}x^2e^{-\lambda x}dx=\frac{1}{\lambda^2}\int_{-\infin}^0 t^2e^tdt=\frac{1}{\lambda^2}(t^2-2t+2)e^{t}|_{-\infin}^0=\frac{2}{\lambda^2} E(X2)=λ∫0+∞x2e−λxdx=λ21∫−∞0t2etdt=λ21(t2−2t+2)et∣−∞0=λ22
方差
D ( X ) = E ( X 2 ) − E 2 ( X ) = 1 λ 2 D(X)=E(X^2)-E^2(X)=\frac{1}{\lambda ^2} D(X)=E(X2)−E2(X)=λ21