关于数据增强在图像生成上的一些细节

之前在打竞赛的时候,经常遇到很多分类,检测的问题,而图片的数据量往往都是不够的,少的只有五六百。这时候的任务就是少样本问题。最常用的解决方法就是数据增强,比如裁剪,拉伸,平移,color jittering,flip,region mask(cutout)等,这些做法增大了数据量,使得分类器减少了过拟合的可能性。
不过,这些都不能用到图像生成GAN的任务上去。我在做少样本生成的时候,数据集少的也就只有几百张,这时候discriminator就很容易出现过拟合,倾向于记住所有的real image,导致在后期给Generatot的反馈不可靠,也就没法让G学习到正确的数据分布。
这时候如果使用数据增强,那么增强后的数据集的分布就和原来的不一样了,而G学习到的也是增强后的数据分布。举个通俗点的例子来说,假如对图片做了region mask的增强,那么G最后生成的图片也会包含mask。这肯定不行啊,是吧。
今天看的一篇论文,Differentiable Augmentation for Data-Efficient GAN Training,就重点说明了这个问题,不过他也提出了一种解决方法,那就是让使用一种可微分的增强Diffaug,然后将G生成的图片和真实的图片都做Diffaug,然后D对增强后的数据做判别。在少样本数据上的效果杠杠地。
大概就这样,记录一下diffaug的代码地址:https://github.com/mit-han-lab/data-efficient-gans

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
GAN(生成对抗网络)在图像生成中有广泛的应用。它是一种由生成器和判别器组成的神经网络架构。生成器通过学习输入数据的分布来生成新的样本,而判别器则试图区分真实样本和生成生成的样本。 以下是GAN在图像生成中的几个应用场景: 1. 图像合成:GAN可以用于合成与训练数据相似但不完全相同的图像。通过训练生成器来生成与输入图像相似的输出图像,可以用于图像修复、图像增强等任务。 2. 图像转换:GAN可以将一个图像转换为另一个图像,例如将马转换为斑马,将白天照片转换为夜晚照片等。通过训练生成器来学习不同图像域之间的映射关系,可以实现这种图像转换。 3. 图像超分辨率:GAN可以通过训练生成器来将低分辨率图像转换为高分辨率图像。这在图像增强和图像重建任务中非常有用,如提高图像质量、放大细节等。 4. 人脸生成:GAN可以生成逼真的人脸图像。通过训练生成器来学习人脸图像的分布,可以生成具有多样性和逼真度的人脸图像。 5. 图像编辑:GAN可以用于图像编辑,例如在图像中添加、删除或修改特定对象。通过训练生成器来学习图像编辑的映射关系,可以实现这种图像编辑。 这些只是GAN在图像生成中的一些应用场景,实际上GAN还可以应用于许多其他领域,如自然语言处理、视频生成等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值