1 知识点
定理1:
有限个无穷小的和也是无穷小。
定理2:
有界函数与无穷小的乘积是无穷小。
推论1:
常数与无穷小的乘积是无穷小。
推论2:
有限个无穷小的乘积也是无穷小。
定理3:
如果 lim f ( x ) = A \lim f(x)=A limf(x)=A, lim g ( x ) = B \lim g(x)=B limg(x)=B, 那么
(1) lim [ f ( x ) ± g ( x ) ] = lim f ( x ) ± lim g ( x ) = A ± B \lim [f(x)\pm g(x)]=\lim f(x)\pm \lim g(x)=A\pm B lim[f(x)±g(x)]=limf(x)±limg(x)=A±B;
(2) lim [ f ( x ) ⋅ g ( x ) ] = lim f ( x ) ⋅ lim g ( x ) = A ⋅ B \lim [f(x)\cdot g(x)]=\lim f(x)\cdot \lim g(x)=A\cdot B lim[f(x)⋅g(x)]=limf(x)⋅limg(x)=A⋅B;
(3) 若又有 B ≠ 0 B\neq 0 B=0, 则 lim f ( x ) g ( x ) = lim f ( x ) lim g ( x ) = A B \lim \frac{f(x)}{g(x)}=\frac{\lim f(x)}{\lim g(x)}=\frac{A}{B} limg(x)f(x)=limg(x)limf(x)=BA。
推论1:
如果 lim f ( x ) \lim f(x) limf(x) 存在,而 c c c 为常数,则 lim [ c f ( x ) ] = c lim f ( x ) \lim [cf(x)]=c\lim f(x) lim[cf(x)]=climf(x)。
推论2:
如果 lim f ( x ) \lim f(x) limf(x) 存在,而 n n n 是正整数,则 lim [ f ( x ) ] n = [ lim f ( x ) ] n \lim [f(x)]^n=[\lim f(x)]^n lim[f(x)]n=[limf(x)]n。
定理4:
设有数列 { x n } \lbrace x_n\rbrace { xn} 和 { y n } \lbrace y_n\rbrace { yn},如果 lim n → ∞ x n = A \lim_{n\rightarrow \infty}x_n=A limn→∞xn=A, lim x → ∞ y n = B \lim_{x\rightarrow \infty}y_n=B limx→∞yn=B,那么
(1) lim n → ∞ ( x n ± y n ) = A ± B \lim_{n\rightarrow \infty}(x_n\pm y_n)=A\pm B limn→∞(xn±yn)=A±B;
(2) lim n → ∞ x n ⋅ y n = A ⋅ B \lim_{n\rightarrow \infty}x_n\cdot y_n=A\cdot B limn→∞xn⋅yn=A⋅B;
(3) 当 y n ≠ 0 ( n = 1 , 2 , … ) y_n\neq 0(n=1,2,\dots) yn=0(n=1,2,…) 且 B ≠ 0 B\neq 0 B=0 时, lim n → ∞ x n y n = A B \lim_{n\rightarrow \infty}\frac{x_n}{y_n}=\frac{A}{B} limn→∞ynxn=BA。
定理5:
如果 f ( x ) ≥ g ( x ) f(x)\geq g(x) f(x)≥g(x),而 lim f ( x ) = a \lim f(x)=a limf(x)=a, lim g ( x ) = b \lim g(x)=b limg(x)=b,那么 a ≥ b a\geq b a≥b。
定理6(复合函数的极限运算法则):
设函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)] 是由函数 u = g ( x ) u=g(x) u=g(x) 与函数 y = f ( u ) y=f(u) y=f(u) 复合而成, f [ g ( x ) ] f[g(x)] f[g(x)] 在点 x 0 x_0 x0 的某去心邻域内有定义,若 lim x → x 0 g ( x ) = u 0 \lim_{x\rightarrow x_0}g(x)=u_0 limx→x0g(x)=u0, lim u → u 0 f ( u ) = A \lim_{u\rightarrow u_0}f(u)=A limu→u0f(u)=A,且存在 δ 0 > 0 \delta _0>0 δ0>0,当 x ∈ U ˚ ( x 0 , δ 0 ) x\in \mathring{U}(x_0,\delta_0) x∈U˚(x0,δ0) 时,有 g ( x ) ≠ u 0 g(x)\neq u_0 g(x)=u0,则 lim x → x 0 f [ g ( x ) ] = lim u → u 0 f ( u ) = A \lim_{x\rightarrow x_0}f[g(x)]=\lim_{u\rightarrow u_0}f(u)=A limx→x0f[g(x)]=limu→u0f(u)=A。
2 练习题
2.1 计算极限
-
(1) lim x → 2 x 2 + 5 x − 3 \lim_{x\rightarrow 2}\frac{x^2+5}{x-3} limx→2x−3x2+5
= lim x → 2 ( x 2 + 5 ) lim x → 2 ( x − 3 ) =\frac{\lim_{x\rightarrow 2}(x^2+5)}{\lim_{x\rightarrow 2}(x-3)} =limx→2(x−3)limx→2(x2+5)
= 9 − 1 =\frac{9}{-1} =−19
= − 9 =-9 =−9 -
(2) lim x → 3 x 2 − 3 x 2 + 1 \lim_{x\rightarrow \sqrt{3}}\frac{x^2-3}{x^2+1} limx→3x2+1x2−3
= lim x → 3 ( x 2 − 3 ) lim x → 3 ( x 2 + 1 ) =\frac{\lim_{x\rightarrow \sqrt{3}}(x^2-3)}{\lim_{x\rightarrow \sqrt{3}}(x^2+1)} =limx→3(x2+1)limx→3(x2