如何理解论文中常见的Top-1错误率和Top-5错误率?

本文深入解析了图像分类任务中TOP-5与TOP-1正确率的概念,详细阐述了如何通过评估模型预测概率来衡量分类准确性,为理解深度学习模型性能提供了清晰的视角。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先是TOP-5正确率
举个例子,比如你训练好了一个网络,你要用这个网络去进行图片分类任务,那我假设要分类的数目有50类,那么当我进行测试时,我输入一张图片,网络会依次输出这50个类别的概率,当所有图片测试完成后,那么:TOP-5正确率就是说,在测试图片的50个分类概率中,取前面5个最大的分类概率,正确的标签(分类)有没有在里面,就是它是不是这前5个中的一个,如果是,就是分类成功,那么他的TOP-5正确率此时等于:所有测试图片中正确标签在前五个分类概率的个数/所有的测试图片数
那么,TOP-5错误率就是正确标记的样本数不在前五个概率里面的样本数除以总的样本数

同理,TOP-1错误率就是正确标记的样本数不是最佳概率的样本数除以总的样本数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值