每天一篇论文 268/365 Dual Attention Network for Scene Segmentati

参考文献

[1]https://blog.csdn.net/qq_34914551/article/details/90350063
[2]https://blog.csdn.net/mieleizhi0522/article/details/83111183

代码
原文
摘要

这篇论文通过基于Self Attention mechanism来捕获上下文依赖。提出了Dual Attention Networks (DANet)来自适应地整合局部特征和全局依赖。具体做法是,在一贯的dilated FCN中加入两种类型地attention module。其中position attention module选择性地通过所有位置的加权求和聚集每个位置的特征。channel attention module通过所有channle的feature map中的特征选择性地强调某个特征图。最后将两种attention module的output 求和得到最后的特征表达。所提出的DANet在三个数据集Cityscapes, PASCAL Context和COCO Stuff上实现了state-of-the-art的结果。

整体框架
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值