每天一篇论文 268/365 Dual Attention Network for Scene Segmentati

参考文献

[1]https://blog.csdn.net/qq_34914551/article/details/90350063
[2]https://blog.csdn.net/mieleizhi0522/article/details/83111183

代码

原文

摘要

这篇论文通过基于Self Attention mechanism来捕获上下文依赖。提出了Dual Attention Networks (DANet)来自适应地整合局部特征和全局依赖。具体做法是,在一贯的dilated FCN中加入两种类型地attention module。其中position attention module选择性地通过所有位置的加权求和聚集每个位置的特征。channel attention module通过所有channle的feature map中的特征选择性地强调某个特征图。最后将两种attention module的output 求和得到最后的特征表达。所提出的DANet在三个数据集Cityscapes, PASCAL Context和COCO Stuff上实现了state-of-the-art的结果。

整体框架
在这里插入图片描述
在这里插入图片描述

发布了131 篇原创文章 · 获赞 10 · 访问量 7675
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览