参考文献
[1]https://blog.csdn.net/qq_34914551/article/details/90350063
[2]https://blog.csdn.net/mieleizhi0522/article/details/83111183
代码
原文
摘要
这篇论文通过基于Self Attention mechanism来捕获上下文依赖。提出了Dual Attention Networks (DANet)来自适应地整合局部特征和全局依赖。具体做法是,在一贯的dilated FCN中加入两种类型地attention module。其中position attention module选择性地通过所有位置的加权求和聚集每个位置的特征。channel attention module通过所有channle的feature map中的特征选择性地强调某个特征图。最后将两种attention module的output 求和得到最后的特征表达。所提出的DANet在三个数据集Cityscapes, PASCAL Context和COCO Stuff上实现了state-of-the-art的结果。
整体框架