每天一篇313/365 UnDeepVO: Monocular Visual Odometry through Unsupervised Deep Learning补

UnDeepVO: Monocular Visual Odometry through Unsupervised Deep Learning

code

摘要

本文提出了一种新的单目视觉里程计(VO)系统UnDeepVO。uneepvo能够利用深度神经网络估计单目相机的六自由度姿态和景深。该方法有两个显著特点:一是无监督的深度学习方案,二是绝对尺度恢复。具体地说,我们使用立体图像对来训练不可重复性,但是使用连续的单目图像来测试它。因此,UnDeepVO是一个单目系统。为训练网络而定义的损失函数是基于时空密集信息的。系统概述如图1所示。在KITTI数据集上的实验表明,我们的UnDeepVO在姿态精度方面取得了良好的性能。

贡献

1.我们展示了一个具有恢复绝对尺度的单目视觉系统,并且通过利用空间和时间几何约束以无监督的方式实现了这一点。
2.由于在训练过程中使用了立体图像对,因此不仅可以生成估计的姿势,还可以生成具有绝对比例的估计密集深度图。
3.我们使用KITTI数据集对我们的VO系统进行了评估,结果表明UneepVO在单目相机的姿态估计方面取得了良好的性能。

方法

在这里插入图片描述
数据集: UnDeepVO只需要立体图像进行训练而不需要标记数据集,因此可以使用大量的未标记数据集对其进行训练,以不断提高其性能。

空间对齐

位姿估计损失函数定义
作者提出同时用双目图像对儿估计深度和位姿,用到了左右图像一致性,和前后帧一致性来约束
1左右极限投影误差
在这里插入图片描述
在这里插入图片描述
2.视差一致性损失
在这里插入图片描述
3.位姿一致性损失
作者分别估计了左右个图像序列的位姿,然后让左右位姿对齐
在这里插入图片描述

空间对齐

1.前后帧对齐
在这里插入图片描述
在这里插入图片描述
2. ICP匹配
在这里插入图片描述

在这里插入图片描述

实验
位姿估计

在这里插入图片描述
在这里插入图片描述

深度估计

在这里插入图片描述

发布了132 篇原创文章 · 获赞 10 · 访问量 7737
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览