from __future__ import (absolute_import, division, print_function,
unicode_literals)
import datetime # For datetime objects
import os.path # To manage paths
import sys # To find out the script name (in argv[0])
import pandas as pd
#import statsmodel as sm
# Import the backtrader platform
import backtrader as bt
# Create a Stratey
class TestStrategy(bt.Strategy):
params = (
# Standard MACD Parameters
('period', 252),
('prepend_constant', True),
)
def log(self, txt, dt=None):
''' Logging function for this strategy'''
dt = dt or self.datas[0].datetime.date(0)
print('%s, %s' % (dt.isoformat(), txt))
def __init__(self):
self.dataclose_x = self.datas[0].close
self.dataclose_y = self.datas[1].close
self.ma1 = bt.indicators.SMA(self.datas[0],
period=self.p.period
)
self.ma2 = bt.indicators.SMA(self.datas[1],
period=self.p.period
)
self.order = None
self.buyprice = None
self.buycomm = None
def notify_cashvalue(self, cash, value):
self.log('Cash %s Value %s' % (cash, value))
def notify_order(self, order):
print(type(order), 'Is Buy ', order.isbuy())
if order.status in [order.Submitted, order.Accepted]:
# Buy/Sell order submitted/accepted to/by broker - Nothing to do
return
# Check if an order has been completed
# Attention: broker could reject order if not enough cash
if order.status in [order.Completed]:
if order.isbuy():
self.log(
'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
(order.executed.price,
order.executed.value,
order.executed.comm))
self.buyprice = order.executed.price
self.buycomm = order.executed.comm
else: # Sell
self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
(order.executed.price,
order.executed.value,
order.executed.comm))
self.bar_executed = len(self)
elif order.status in [order.Canceled, order.Margin, order.Rejected]:
self.log('Order Canceled/Margin/Rejected')
self.order = None
def notify_trade(self, trade):
if not trade.isclosed:
return
self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' %
(trade.pnl, trade.pnlcomm))
def next(self):
# Simply log the closing price of the series from the reference
self.log('Close, %.2f' % self.dataclose_x[0])
self.log('Close, %.2f' % self.dataclose_y[0])
# Check if we are in the market
if not self.getposition(self.datas[1]):
# Not yet ... we MIGHT BUY if ...
if (self.ma1[0]-self.ma1[-1])/self.ma1[-1]>(self.ma2[0]-self.ma2[-1])/self.ma2[-1]:
#if sma[0]<top[-5]:
# BUY, BUY, BUY!!! (with default parameters)
self.log('BUY CREATE,{},{}'.format(self.dataclose_y[0],self.dataclose_x[0]) )
# Keep track of the created order to avoid a 2nd order
self.order=self.buy(self.datas[0])
self.order = self.sell(self.datas[1])
else:
# Already in the market ... we might sell
if (self.ma1[0]-self.ma1[-1])/self.ma1[-1]<=(self.ma2[0]-self.ma2[-1])/self.ma2[-1]:
# SELL, SELL, SELL!!! (with all possible default parameters)
self.log('BUY CREATE,{},{}'.format(self.dataclose_y[0],self.dataclose_x[0]) )
# Keep track of the created order to avoid a 2nd order
self.log('Pos size %s' % self.position.size)
self.order = self.close(self.datas[1])
self.order = self.close(self.datas[0])
if __name__ == '__main__':
# Create a cerebro entity
cerebro = bt.Cerebro()
cerebro.addstrategy(TestStrategy)
# Datas are in a subfolder of the samples. Need to find where the script is
# because it could have been called from anywhere
datapath_1='C:/Users/Administrator/Documents/000001.SZ.csv'
datapath_2='C:/Users/Administrator/Documents/000002.SZ.csv'
# Create a Data Feed
data_1 = bt.feeds.GenericCSVData(
dataname=datapath_1,
# Do not pass values before this date
fromdate=datetime.datetime(1991, 12, 23),
# Do not pass values after this date
todate=datetime.datetime(2017, 12, 31),
dtformat=('%Y-%m-%d'),
tmformat=('%H.%M.%S'),
date=0,
open=1,
close=2,
high=3,
low=4,
volume=5,
openinterest=6,
code=-1,
reverse=False)
data_2 = bt.feeds.GenericCSVData(
dataname=datapath_2,
# Do not pass values before this date
fromdate=datetime.datetime(1991, 12, 23),
# Do not pass values after this date
todate=datetime.datetime(2017, 12, 31),
dtformat=('%Y-%m-%d'),
tmformat=('%H.%M.%S'),
date=0,
open=1,
close=2,
high=3,
low=4,
volume=5,
openinterest=6,
reverse=False)
# Add the Data Feed to Cerebro
cerebro.adddata(data_1)
cerebro.adddata(data_2)
# Set our desired cash start
cerebro.broker.setcash(100000.0)
cerebro.broker.setcommission(commission=0.001)
cerebro.addsizer(bt.sizers.FixedSize, stake=100)
# Print out the starting conditions
print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())
# Run over everything
cerebro.run()
# Print out the final result
print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())
cerebro.plot()
backtrader-学习笔记2
最新推荐文章于 2025-03-28 14:11:50 发布