激活函数--activation function 介绍一下几种激活函数的不同

本文介绍了深度学习中常见的激活函数,包括ReLU、ReLU6、Softplus和Sigmoid的定义、作用及代码实现。ReLU通过截断负数使网络具备非线性能力;ReLU6进一步限制了输出范围;Softplus提供平滑的非线性;Sigmoid将每个输入映射到(0,1)区间,常用于二分类问题。" 101425480,5610658,字符串冒泡排序实践与解析,"['算法', '排序', '字符串处理', '编程']
摘要由CSDN通过智能技术生成

激活函数--activation function

介绍一下几种激活函数的不同

1、tf.nn.relu(features, name=None)

输入:features:是一个张量Tensor,格式必须为:float32, float64int32int64uint8int16int8当中的一种。

实质:计算整数线性,输入的特征(features)中的矩阵元素,与0进行比较:maxfeatures0

代码执行如下:

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值