损失函数Hinge Loss介绍

Hinge Loss 是一种损失函数,广泛用于 支持向量机(SVM, Support Vector Machine) 和一些分类问题中。它特别适合用于 二分类问题,主要目标是让模型的预测值(通常是经过线性变换的原始分数)与真实标签之间的间隔尽可能大,从而提高分类的鲁棒性。

Hinge Loss 的定义

Hinge Loss 的特点

  1. 间隔最大化:
    强调决策边界的间隔,促使分类器找到一个对噪声数据较为鲁棒的决策边界。

  2. 稀疏性:
    仅对误分类或距离边界太近的样本(支持向量)有非零损失,从而节省计算。

  3. 线性模型:
    通常与线性模型结合(如线性 SVM),但也可以扩展到非线性模型(如核 SVM)。

  4. 不可微性:
    在 yif(xi)=1 的位置不可导,但通常可以通过次梯度法优化。

使用场景

1. 支持向量机(SVM)

Hinge Loss 是 SVM 的核心损失函数。在 SVM 中,Hinge Loss 结合正则化项(通常是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值