基于神经网络预测混沌时间序列的方法,分析了神经网络的基于工作原理,并用模拟产生的logistic方程数据与实际采集的海杂波数据
将径向基函数(RBF)神经网络应用于混沌时间序列的预测,设计了一个三层RBF网络结构.对于三个典型的混沌系统,在不同的噪声水平下,采用RBF网络模型分别进行了预测研究.
clc
clear
close all
%--------------------------------------------------
% 公共参数
k1 = 6000; % 前面的迭代点数
k2 = 2000; % 后面的迭代点数 (总样本数)
%--------------------------------------------------
% 产生混沌序列
% dx/dt = sigma*(y-x)
% dy/dt = r*x - y - x*z
% dz/dt = -b*z + x*y
sigma = 16; % Lorenz 方程参数 a
b = 4; % b
r = 45.92; % c
y = [-1,0,1]; % 起始点 (1 x 3 的行向量)
h = 0.01; % 积分时间步长
k1 = 30000; % 前面的迭代点数
k2 = 6000; % 后面的迭代点数
z = LorenzData(y,h,k1+k2,sigma,r,b);
X = z(k1+1:end,1); % 时间序列
%--------------------------------------------------
X = normalize_a(X,1); % 信号归一化到均值为0,振幅为1
tau = 1; % 时延
m = 3; % 嵌入维数
%--------------------------------------------------
train_num = 500 % 训练样本数
test_num = 1500 % 测试样本数
%--------------------------------------------------
% 混沌序列的相空间重构 (phase space reconstruction)
x_train = X(1:train_num);
x_test = X(train_num+1:train_num+test_num);
[xn_train,dn_train] = PhaSpaRecon(x_train,tau,m);
[xn_test,dn_test] = PhaSpaRecon(x_test,tau,m);
%------------------------------------------------------
% 神经元数是训练样本个数
P = xn_train;
T = dn_train;
spread = 10 % 此值越大,覆盖的函数值就大(默认为1)
net = newrbe(P,T,spread);
err1 = sim(net,xn_train)-dn_train;
err_mse1 = mean(err1.^2);
Perr1 = err_mse1/var(X)
dn_pred = sim(net,xn_test);
err2 = dn_pred-dn_test;
err_mse2 = mean(err2.^2);
Perr2 = err_mse2/var(X)
%------------------------------------------------------
figure;
subplot(211);
plot(1:length(err2),dn_test,'r+:',1:length(err2),dn_pred,'bo-');
title('真实值(+)与预测值(o)')
subplot(212);
plot(err2,'k');
title('预测绝对误差')