Vicuna:与ChatGPT 性能最相匹配的开源模型

Vicuna是基于LLaMA微调的大型语言模型,由UCBerkeley等机构研究人员创建。在GPT-4的评估下,Vicuna的表现接近ChatGPT,优于Alpaca和LLaMA。训练成本约为300美元,源代码和在线演示已公开。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

37f1f70151d7cc8b0cb1f51805836bd1.png

Vicuna (由stable diffusion 2.1生成)

前言

最近由UC Berkeley、CMU、Stanford, 和 UC San Diego的研究人员创建的 Vicuna-13B,通过在 ShareGPT 收集的用户共享对话数据中微调 LLaMA获得。其中使用 GPT-4 进行评估,发现Vicuna-13B 的性能达到了ChatGPT 和 Bard 的 90% 以上,同时在 90% 情况下都优于 LLaMA 和 Alpaca 等其他模型。训练 Vicuna-13B 的费用约为 300 美元。训练和代码[1]以及在线演示[2]已公开。

Vicuna到底怎么样?

Vicuna在官网中通过和Alpaca、LLaMA、ChatGPT和Bard对比,然后通过GPT4当裁判来打出分数,具体如下。

ffc665b0b7f7320859121ca5cd0c9aac.png
问题
3e6efa7d06a964432cb7a464dab460b4.png
Alpaca-13b vs Vicuna
507f0bb9ec0248d0d2cd63c748ec1271.png
LLaMA-13b vs Vicuna
0f3b92d7563ddb878aa167fd5612f5b7.png
ChatGPT vs Vicuna
57e59b0844bab3273e5163b44f9bc58b.png
Bard vs Vicuna

可以看出,Vicuna的回答还是非常棒的,让GPT4来打分,Vicuna和ChatGPT是十分接近的,远远高于Alpaca和LLaMA。

如果大家想试试别的问题,可以自己去尝试[3]哈。

37673c9c48c18bed86328d5ac834bf8e.png
可换不同类型的不同问题

然而,官方认为评估聊天机器人绝非易事,听过GPT4进行评估是一件十分不严格的事情,但是目前还是无法解决评估的问题,需要后续学者进行进一步探索。

c24fcdf6c0977dcd1017a64a312c777a.png
图1 GPT-4 评估

在线demo

可以在线品尝:https://chat.lmsys.org/。

e2520e35bbd2949b9c22b54b5e19bf9e.png

概述

28be7f330b515c29597a0e2f676c1f6a.png
图2 工作流

图 2 介绍了整体工作流程。训练是在一天时间在 8 个 A100 上使用 PyTorch FSDP 完成的。 LLaMA、Alpaca、ChatGPT 和 Vicuna 的详细比较如表 1 所示。

bf5ee4f8b0cdba1f118656fc1eca620d.png
表1 一些模型的对比

训练

Vicuna 是通过使用从 ShareGPT.com 使用公共 API 收集的大约 7万 用户共享对话微调 LLaMA 基础模型创建的。为了确保数据质量,将 HTML 转换回 markdown 并过滤掉一些不合适或低质量的样本。此外,将冗长的对话分成更小的部分,以适应模型的最大上下文长度。

训练方法建立在斯坦福alpaca的基础上,并进行了以下改进。

  • 内存优化:为了使 Vicuna 能够理解长上下文,将最大上下文长度从alpaca 中的 512 扩展到 2048。还通过gradient checkpointingflash attentio来解决内存压力。

  • 多轮对话调整训练损失考虑多轮对话,并仅根据聊天机器人的输出进行微调。

  • 通过 Spot 实例降低成本:使用 SkyPilot 托管点来降低成本。该解决方案将 7B 模型的训练成本从 500 美元削减至 140 美元左右,将 13B 模型的训练成本从 1000 美元左右削减至 300 美元。

b4c0cf26d774b533fbff4be9f8103158.png
图3 通过GPT4来评估打分
cd35c406c179c75a2766250b4e6bcccf.png
通过GPT4评估得出的总分

github: https://github.com/lm-sys/FastChat
Vicuna-13B: https://github.com/lm-sys/FastChat#vicuna-weights

进NLP群—>加入NLP交流群(备注nips/emnlp/nlpcc进入对应投稿群)

持续发布自然语言处理NLP每日优质论文解读、相关一手资料、AI算法岗位等最新信息。

加入星球,你将获得:

1. 每日更新3-5篇最新最优质的的论文速读

2. 最新入门和进阶学习资料

4. 每日1-3个NLP、搜广推、CV等AI岗位招聘信息

be7ad9b937ec721595e6b5e0355a05e5.png

参考资料

[1]

Vicuna代码: https://github.com/lm-sys/FastChat

[2]

Vicuna demo: https://chat.lmsys.org/

[3]

官方blog: https://vicuna.lmsys.org/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值