25年的大模型Infra,SSP人才画像?

3994cbe06fb5b1c19bd4bc7816e22773.jpeg

距离秋招(冬招)结束也有一段时间了,周围的朋友们部分都收到了满意的offer。通过我和大佬们的交流,觉得他们能收到很高的of也并非偶然,在赛道越来越卷的大模型方向,每个即将校招的同学都想参与其中。对于Infra来说,我感觉拿到SSP,可以大体的用数据来进行衡量。以下均为纸面实力,不考虑面试表现且认为大家力扣都是150题达标水平

知乎:大润发杀鱼工(已授权)
链接:https://zhuanlan.zhihu.com/p/17809009204
编辑:「深度学习自然语言处理」公众号

学历(中科院院所可自行转换):f492b77d8be9df380484ed625495ea39.png

匹配实习:

一般以3个月为一个实习周期,考虑最优是前司与面试公司有相同推进的项目,这样面试过程往往会变成关于项目细节的询问。次优,则是实习与工作能用上相同的工具链,例如训练的框架,推理的框架,这样的面试往往会从框架层面来考察面试者的能力。最次,则是虽然在大模型的实习,但是没有接触到核心的内容,只承担边角工作的结果可能会导致面试变成八股考试。这里暂时不考虑大厂小厂,以实习内容质量为衡量标准。5f110c84b0205d443d3d2c7a6c194531.png

高质量的学术论文

2.高质量的学术论文。一般来说,Infra的论文会通常与系统方向挂钩,但系统方向动辄12-13页双栏的要求,作为一个硕士是很难达到的。因此,直观理解,一篇系统A会的性价比远远小于一段3个月以上的对口实习。打分上,按照不对口对应扣1分,CCF A 系统一作,5分,AI类一作 3分(考虑大概率不会太对口)。B类系统一作,3分。C类系统一作,1分。375163c7984a33e0276a4d9d88e586fb.png

开源社区贡献

一般来说,开源社区的贡献也是非常值得注意的一点,因为大模型的场景实际非常新,无论是训练推理还是其他大模型方向,都有比较活跃的开源社区,例如OpenRLHF,SGlang,LLama-factory等。如果面试者在一些公司经常使用的框架下,有非常核心的贡献,其参照权重不亚于一段关键的实习经历。b9839dccf4c4d89bc6eeef718e17eb63.png

其他公司的Offer(额外)

参加秋招确实能感觉出来,"offer都是A出来的",当你有了多家公司比较可观的offer之后,就有了资本去和目标的公司来讨价还价,甚至把所有的包都a成SSP。但最关键的一点应该是,你需要先有一个SSP的offer,才能帮助你在谈薪时,有更大的概率冲刺SSP。所以这一部分,暂时不计入SSP包的得分计算中。

总分合计

打分中我的设置里面头部效应明显,越是匹配的,能够获得的得分往往更高。并且计算分数只考虑普遍情况。

大厂和明星初创我认为暂时放在一个维度,主要是因为初创是一个高风险高收益的地方,薪资高,但风险也越大。综合的难度上就会和大厂接近。中厂比较好理解,规模比大厂略小。但非主营公司的意思,主要是例如车厂/手机厂,核心业务偏实体经济,可能存在大模型的落地场景。

PS:拿几个朋友的经历对了一下,还比较匹配。如果有不对应之处,可以评论区指正。816bd3577cb9299b31f2dc188bcddc47.png


备注:昵称-学校/公司-方向/会议(eg.ACL),进入技术/投稿群

27298c284b6a47056a8e3715a6e1e398.png

id:DLNLPer,记得备注呦

内容概要:该论文研究了一种基于行波理论的输电线路故障诊断方法。当输电线路发生故障时,故障点会产生向两侧传播的电流和电压行波。通过相模变换对三相电流行波解耦,利用解耦后独立模量间的关系确定故障类型和相别,再采用小波变换模极大值法标定行波波头,从而计算故障点距离。仿真结果表明,该方法能准确识别故障类型和相别,并对故障点定位具有高精度。研究使用MATLAB进行仿真验证,为输电线路故障诊断提供了有效解决方案。文中详细介绍了三相电流信号生成、相模变换(Clarke变换)、小波变换波头检测、故障诊断主流程以及结果可视化等步骤,并通过多个实例验证了方法的有效性和准确性。 适合人群:具备一定电力系统基础知识和编程能力的专业人士,特别是从事电力系统保护与控制领域的工程师和技术人员。 使用场景及目标:①适用于电力系统的故障检测与诊断;②能够快速准确地识别输电线路的故障类型、相别及故障点位置;③为电力系统的安全稳定运行提供技术支持,减少停电时间和损失。 其他说明:该方法不仅在理论上进行了深入探讨,还提供了完整的Python代码实现,便于读者理解和实践。此外,文中还讨论了行波理论的核心公式、三相线路行波解耦、行波测距实现等关键技术点,并针对工程应用给出了注意事项,如波速校准、采样率要求、噪声处理等。这使得该方法不仅具有学术价值,也具有很强的实际应用前景。
内容概要:本文深入剖析了2025全球感知技术的十大发展趋势,涵盖多模态感知融合、3D感知与空间计算、脑机接口中的感知反馈技术、5G/6G赋能的超低延迟感知、语音与情感识别的高级化、生物感知与数字健康、环境感知与自适应智能、增强现实(AR)与触觉反馈技术、气味与化学感知、量子感知与极端条件测量。文章详细介绍了每项技术的技术原理、关键算法、实现方式、商业案例及未来前景,强调了感知技术在智慧城市、自动驾驶、智慧医疗、工业自动化等领域的深刻影响。报告指出,感知技术正从单一传感模式向多模态融合、从二维数据向三维空间重建、从传统网络通信向超低延迟和高可靠性网络升级,实现全场景、全维度的智能感知。; 适合人群:对感知技术感兴趣的科技爱好者、研究人员、决策者、企业管理层和投资人。; 使用场景及目标:①了解感知技术的最新进展和未来发展方向;②为技术研究提供全面、深入的参考;③为商业应用提供具体的案例和前景分析;④推动跨领域协同创新,构建开放共赢的产业生态。; 其他说明:报告基于近来技术研发的最新进展、业界前沿的技术路线以及各大科技企业在商业落地方面的丰富实践。随着感知技术的不断成熟,数据隐私与安全保护问题也需高度重视,以确保技术进步与社会伦理和谐统一。未来,感知技术将成为推动社会进步和产业升级的重要力量,为实现万物互联、智慧决策和智能体验提供无限可能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值