二次型是实对称矩阵,它总是可以找到正交阵,使其对角化。
可以求n个不同的特征向量,把他们化成标准基组成一个矩阵。由于不同的特征值的特征向量之间是正交的,只需要把同一个特征值下的特征值进行正交化即可。
用分块矩阵的思路去做,会更简洁,即左乘矩阵,将第一列下面的化成0,再右乘矩阵,化第一行的为0,然后开始化第二行,第二列,然后一直做下去。。。,合同选择的矩阵可逆即可。
事实上,如果顺序主子式都不为0,则存在一个特殊上三角矩阵T(对角线元素都是1的可逆矩阵)使其对角化,使用数学归纳法,将第一行和第一列除了a11以外的元素减去a11的倍数化成0,然后剩下的A1矩阵也满足顺序主子式都不为0,从而得到若干特殊上三角矩阵相乘。实际上,考虑x1x2的二次型,选择的矩阵就不是特殊上三角阵。
1. 矩阵正定的充要条件是顺序主子式大于0
2.正定则合同于单位阵
3.半正定,则正惯性指数等于秩,且所有主子式大于等于0,有,若P可逆,则正定。
4. 根据正定判断变量范围
5. 秩为r的对称阵,可以表示为r个秩为1的矩阵之和
钱吉林有类似的题目,秩为r的矩阵A,可以找到秩k-r的矩阵B,使A+B的秩为k(k大于等于r,小于等于n)
6. 用定义证明非方阵的矩阵合同
7. 若矩阵不是对称的,考虑中的x1x2的系数,如6x1x2,可以拆成2x1x2+4x2x1,也可以看做是4x1x2+2x2x1,所以。对于任意的X,满足=0,则A是反对称,若A对称,则A=O。
8.考虑非退化替换
9. 考虑配方法