mobilenetv4-pytorch图像识别算法模型

MobileNetv4

轻量化之王MobileNetV4,手机推理速度3.8ms,在移动CPU、DSP、GPU以及苹果M处理器和谷歌Pixel Edge TPU全都高性能。

论文

MobileNetV4 - Universal Models for the Mobile Ecosystem

模型结构

通用UIB块在倒瓶颈块中引入两个可选的DW,一个在扩展层之前,另一个在扩展层和投影层之间,很好地统一了几个重要现有块,包括原始的IB块、ConvNext块以及ViT中的FFN块。此外,UIB还引入了一种新的变体:额外的深度卷积IB(ExtraDW)块;MobileMQA一个专为加速器优化的新型注意力块,它能提供超过39%的推理速度提升。

算法原理

利用标准组件引入新的通用反转瓶颈UIB和移动MQA层,并结合改进的神经架构搜索(NAS)方法改进mobilenet,然后将这些与一种新颖的、最先进的蒸馏方法相结合。

环境配置

mv mobilenetv4_pytorch MobileNetv4 # 去框架名后缀

Docker(方法一)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术瘾君子1573

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值