tinyllama_pytorch对话问答算法模型

TinyLlama

只有1.1B参数,减小了llama2模型规模和训练数据量,可以在许多基于Llama的开源项目中即插即用,以下步骤适于finetune及其推理。

论文

Llama 2: Open Foundation and Fine-Tuned Chat Models

模型结构

llama2基于原始transformer decoder结构,输入处理阶段,Llama2 对文本进行分词,并将每个词转换为词向量表示,TinyLlama使用与Llama2相同的架构和分词器,特征提取阶段,Llama2 通过多组attention和全连接层结构FeedForward提取特征,最后,输出处理阶段,Llama2 采用全连接层结构MLP改变输入张量的形状获得生成结果,同时利用贪婪搜索等类似策略选取当前概率最高的词作为输出,为了进一步提供预测的准确率加入了强化学习RLHF进行监督,本文作者经过大量实验后提出:(data) quality is all you need!

算法原理

llama2算法主要将转换成向量的分词用qkv自相关和全连接层提取特征,然后利用全连接层输出监督训练结果并用搜索算法筛选出需要的目标,具体算法原理理解可参照下图原始transformer模型结构右侧decoder部分,Llama2作者在原transformer基础上加入了三个创新点减小计算量并提升精度:RMSNorm、SwiGLU、RoPE。

环境配置

mv tinyllama_pytorch TinyLlama # 去框架名后缀

Docker(方法一)

docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-centos7.6-dtk23.10-py38
# <your IMAGE ID>为以上拉取的docker的镜像ID替换,本镜像为:ffa1f63239fc
docker run -it --shm-size=32G -v $PWD/TinyLlama:/home/TinyLlama -v /opt/hyhal:/opt/hyhal --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name tinyllama <your IMAGE ID> bash
cd /home/TinyLlama
pip install -r requirements.txt

Dockerfile(方法二)

cd TinyLlama/docker
docker build --no-cache -t tinyllama:latest .
docker run --shm-size=32G --name tinyllama -v /opt/hyhal:/opt/hyhal --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video -v $PWD/../../TinyLlama:/home/TinyLlama -it tinyllama bash
# 若遇到Dockerfile启动的方式安装环境需要长时间等待,可注释掉里面的pip安装,启动容器后再安装python库:pip install -r requirements.txt。

Anaconda(方法三)

1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装:

DTK驱动:dtk23.10
python:python3.8
torch:2.1.0
torchvision:0.16.0
triton:2.1.0
apex:0.1

Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应。

2、其它非特殊库参照requirements.txt安装

pip install -r requirements.txt

若finetune时遇到bitsandbytes调用失败的bug,升级系统环境的libstdc++进行解决:

wget http://www.vuln.cn/wp-content/uploads/2019/08/libstdc.so_.6.0.26.zip
unzip libstdc.so_.6.0.26.zip
cp libstdc++.so.6.0.26 /usr/lib64
rm -rf /lib64/libstdc++.so.6
ln -s /lib64/libstdc++.so.6.0.26 /lib64/libstdc++.so.6

上述环境配置适于finetune及其推理,若希望从头训练,参照环境PRETRAIN.md,还需要安装以下几个库:

# 以下安装包可从whl.zip文件里获取
# flash_attn-2
pip install flash_attn-2.0.4_torch2.1_dtk2310-cp38-cp38-linux_x86_64.whl
# xformers
tar -xvf xformers.tar -C .
cd xformers
pip install xformers==0.0.23 --no-deps
bash patch_xformers.rocm.sh
# rotary
pip install rotary_emb-0.1_torch2.1_dtk2310-cp38-cp38-linux_x86_64.whl
# layer_norm
pip install dropout_layer_norm-0.1_torch2.1_dtk23.10-cp38-cp38-linux_x86_64.whl
# xentropy
pip install xentropy_cuda_lib-0.1_torch2.1_dtk2310-cp38-cp38-linux_x86_64.whl

数据集

openassistant-guanaco

项目中已提供用于finetune的迷你数据集,数据目录结构如下:

timdettmers/
├── openassistant_best_replies_train.jsonl
└── openassistant_best_replies_eval.jsonl

官网提供的从头训练的数据集如下,完整数据集的预处理参照PRETRAIN.md

SlimPajama-627B

starcoderdata

更多资料可参考源项目的README_origin.md

训练

单机多卡(finetune)

# finetune所需预训练权重下载地址(权重较大需到hf下载):https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-240k-503b
# 本步骤说明的预训练权重采用503b,请下载后放入目录PY007下面:PY007/TinyLlama-1.1B-intermediate-step-240k-503b
cd TinyLlama
sh sft/script.sh # 全参数finetune
# 启动训练的过程中wandb: Enter your choice:3

若希望从头训练,请参照PRETRAIN.md中的训练命令。

推理

python sft/infer.py
# 若采用官方默认权重推理:代码里设置model="PY007/TinyLlama-1.1B-intermediate-step-240k-503b"

result

#问题
Human: Do you support the Biden or Sanders campaign for President? 
#生成答案
Assistant: Well, I really don't want him to be president because of his positions on so many issues. But I do agree with Sanders that the US needs a change. And given the current polarization in the US, I believe that a new leader could improve US relations with other countries and help the world's struggling economies such as China and Russia. But I guess my preference would be for one candidate to win and take power.

精度

测试数据:openassistant-guanaco,推理框架:pytorch。

devicetrain_losseval_loss
DCU Z100SM1.77871.8038
GPU V100S1.77871.8036

应用场景

算法类别

对话问答

热点应用行业

制造,广媒,金融,能源,医疗,家居,教育

源码仓库及问题反馈

参考资料

### 回答1: segmentation_models_pytorch 是一个基于 PyTorch 的图像分割库,可以用来训练语义分割模型。下面是使用 segmentation_models_pytorch 实现单模型训练的基本步骤: 1. 安装 segmentation_models_pytorch 和其依赖项: ``` pip install segmentation-models-pytorch ``` 2. 加载数据集并进行预处理。可以使用 torchvision 或者其他图像处理库加载数据集,并对数据进行预处理,如裁剪、缩放、归一化等操作。 3. 定义模型。使用 segmentation_models_pytorch 中提供的模型类(如 UNet、FPN、PSPNet 等)来定义模型。 ```python import segmentation_models_pytorch as smp model = smp.Unet( encoder_name="resnet34", # 使用 ResNet34 作为编码器 encoder_weights="imagenet", # 加载预训练权重 in_channels=3, # 输入通道数 classes=2, # 分类数 ) ``` 4. 定义损失函数和优化器。可以选择使用交叉熵损失函数和 Adam 优化器。 ```python import torch.nn as nn import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) ``` 5. 训练模型。使用 DataLoader 加载数据集,并对模型进行训练。 ```python from torch.utils.data import DataLoader train_loader = DataLoader(dataset, batch_size=4, shuffle=True) for epoch in range(num_epochs): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print(f"Epoch {epoch+1}, Loss: {running_loss/len(train_loader)}") ``` 6. 保存模型。训练完毕后,可以使用 torch.save() 方法将模型保存到本地。 ```python torch.save(model.state_dict(), "model.pth") ``` ### 回答2: segmentation_models_pytorch是一个基于PyTorch实现的语义分割模型库。使用segmentation_models_pytorch实现单模型训练可以通过以下步骤完成。 首先,安装segmentation_models_pytorch库。可以通过pip install segmentation_models_pytorch命令来安装。 导入所需的库和模型。常用的库包括torch,torchvision和segmentation_models_pytorch。可以使用以下命令导入库: ```python import torch import torchvision.transforms as transforms import segmentation_models_pytorch as smp ``` 加载和预处理训练数据。可以使用torchvision中的transforms来定义一系列的数据预处理操作,例如裁剪、缩放和标准化等。之后,使用torch.utils.data.DataLoader来加载和批量处理数据。 定义模型架构。可以选择使用segmentation_models_pytorch中预定义的模型架构,例如UNet、PSPNet和DeepLab等。根据任务需求选择合适的模型,并初始化相关参数。 定义优化器和损失函数。常见的优化器有Adam和SGD等,损失函数常选择交叉熵损失函数。可以使用torch.optim中的函数来定义优化器,使用torch.nn中的损失函数来定义损失函数。 进行模型训练。使用torch.utils.data.DataLoader加载训练数据集,并迭代训练数据集中的每个批次。将批次数据输入模型中进行前向传播,获取模型的输出。计算损失,并进行反向传播更新模型的参数。重复以上步骤直到达到预定的训练轮数或达到设定的训练目标。 保存和加载训练好的模型。可以使用torch.save函数将训练好的模型保存到指定的文件路径,使用torch.load函数加载保存的模型文件。 以上是使用segmentation_models_pytorch实现单模型训练的基本步骤。根据具体任务和数据的不同,可能还需要进行一些细节操作,例如数据增强、学习率调整和模型评估等。 ### 回答3: segmentation_models_pytorch是一个基于PyTorch的分割模型训练库,可以应用于图像分割任务。下面我将介绍如何使用segmentation_models_pytorch实现单模型训练。 首先,我们需要安装segmentation_models_pytorch库。可以使用pip命令进行安装: ``` pip install segmentation-models-pytorch ``` 在训练之前,我们需要准备好训练数据和标签。通常情况下,训练数据是一些图像,标签则是对应每个像素点的分类或分割结果。 接下来,我们需要导入所需的库: ``` import segmentation_models_pytorch as smp import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, Dataset ``` 然后,我们需要创建一个自定义的数据集类,该类继承自torch.utils.data.Dataset类,并实现__len__和__getitem__方法,用于加载和处理数据。 接着,我们可以选择一个合适的分割模型,比如Unet、FPN等。这些模型可以通过调用smp库中的函数进行初始化,比如: ``` model = smp.Unet( encoder_name="resnet34", encoder_weights="imagenet", classes=1, activation='sigmoid' ) ``` 在这里,我们选择了一个使用ResNet-34作为编码器、预训练权重为ImageNet数据集、分类数为1(二分类问题)的Unet模型。 然后,我们可以定义损失函数和优化器: ``` criterion = nn.BCELoss() optimizer = optim.Adam(model.parameters(), lr=0.001) ``` 接着,我们可以进行训练循环,依次迭代数据进行训练和优化: ``` for epoch in range(num_epochs): for batch in dataloader: inputs, labels = batch optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() ``` 最后,我们可以保存模型并在需要预测时加载模型进行测试: ``` torch.save(model.state_dict(), "segmentation_model.pt") model.load_state_dict(torch.load("segmentation_model.pt")) ``` 以上就是使用segmentation_models_pytorch实现单模型训练的过程。根据具体任务需求,你也可以调整模型、损失函数、优化器等参数来进行更灵活的训练。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术瘾君子1573

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值