deepseek-janus-pro_pytorch文生图模型

DeepSeek-Janus-Pro

论文

Janus-Series: Unified Multimodal Understanding and Generation Models

模型结构

是一个新颖的自回归框架,统一了多模态理解和生成。它通过将视觉编码解耦到单独的路径中,同时仍然利用单个统一的transformer架构进行处理,解决了以前方法的局限性。这种解耦不仅缓解了视觉编码器在理解和生成中的角色之间的冲突,而且增强了框架的灵活性。骏利超越了以前的统一模型,匹配或超过了特定任务模型的性能。Janus的简单性、高灵活性和有效性使其成为下一代统一多模式模型的有力候选。

算法原理

Janus-Pro是之前工作Janus的高级版本。具体来说,Janus-Pro结合了(1)优化的训练策略(2)扩展的训练数据和(3)扩展到更大的模型尺寸。通过这些改进,Janus-Pro在多模态理解和文本到图像指令跟踪功能方面取得了重大进步,同时还增强了文本到图像生成的稳定性。

环境配置

Docker(方法一)

docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.3.0-ubuntu22.04-dtk24.04.3-py3.10

docker run --shm-size 500g --network=host --name=Janus --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v 项目地址(绝对路径):/home/ -v /opt/hyhal:/opt/hyhal:ro -it <your IMAGE ID> bash

cd ./code_path/
pip install -r requirements.txt

Dockerfile(方法二)

docker build -t <IMAGE_NAME>:<TAG> .

docker run --shm-size 500g --network=host --name=Janus --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v 项目地址(绝对路径):/home/ -v /opt/hyhal:/opt/hyhal:ro -it <your IMAGE ID> bash

cd ./code_path/
pip install -r requirements.txt

数据集

训练

推理

注意:修改模型路径及图片路径

文生图

python inference.py

result

图片问答

python generation_inference.py

result

精度

应用场景

算法类别

以文生图

热点应用行业

电商,教育,广媒,政府

预训练权重

huggingface | SCNet高速下载通道

源码仓库及问题反馈

参考资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术瘾君子1573

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值