单调性与极值
概念:有函数
y
=
f
(
x
)
:
y=f(x):
y=f(x):
1.
x
∈
D
1.x\in D
1.x∈D
2.
f
′
(
x
)
{
=
0
不
存
在
→
不
一
定
2.f'(x)\begin{cases}=0\\不存在 \end{cases} \rightarrow不一定
2.f′(x){=0不存在→不一定
3.
有
两
种
辨
别
法
可
以
判
断
函
数
的
极
值
点
3.有两种辨别法可以判断函数的极值点
3.有两种辨别法可以判断函数的极值点
方法一:第一充分条件
{
x
<
x
0
,
f
′
(
x
)
<
0
x
>
x
0
,
f
′
(
x
)
>
0
⟹
x
=
x
0
为
极
小
点
\begin{cases}x<x_0,f'(x)<0 \\ x>x_0,f'(x)>0 \end{cases}\Longrightarrow x=x_0 为极小点
{x<x0,f′(x)<0x>x0,f′(x)>0⟹x=x0为极小点
注解: 若 x 位 于 x 0 若x位于x_0 若x位于x0的左边,它的一阶导数小于0,说明函数是在单调递减的;当 x 位 于 x 0 x位于x_0 x位于x0的右边时,它的一阶导数大于0,又说明函数是在单调递增的。也就是先递减到了 x 0 x_0 x0点之后递增。所以 x 0 x_0 x0是极小值。
{ x < x 0 , f ′ ( x ) > 0 x > x 0 , f ′ ( x ) < 0 ⟹ x = x 0 为 极 大 点 \begin{cases}x<x_0,f'(x)>0 \\ x>x_0,f'(x)<0 \end{cases}\Longrightarrow x=x_0 为极大点 {x<x0,f′(x)>0x>x0,f′(x)<0⟹x=x0为极大点
注解: 若 x 位 于 x 0 若x位于x_0 若x位于x0的左边,它的一阶导数大于0,说明函数是在单调递增的;当 x 位 于 x 0 x位于x_0 x位于x0的右边时,它的一阶导数小于0,又说明函数是在单调递减的。也就是先递增到了 x 0 x_0 x0点之后递减。所以 x 0 x_0 x0是极大值。
方法二:第二充分条件
f
′
(
x
0
)
=
0
,
f
′
′
(
x
0
)
{
>
0
,
极
小
点
<
0
,
极
大
点
f'(x_0)=0,f''(x_0)\begin{cases}>0,极小点\\ <0,极大点 \end{cases}
f′(x0)=0,f′′(x0){>0,极小点<0,极大点
注解: 当 x 0 x_0 x0点的一阶导数等于0时,若 x 0 x_0 x0点的二阶导数大于0则该点为极小点,若 x 0 x_0 x0点的二阶导数小于0则该点为极大点。
二阶导数大于0为极小点的证明:
已
知
:
f
′
(
x
0
)
=
0
,
f
′
′
(
x
0
)
>
0.
请
证
明
:
f
(
x
0
)
为
极
小
点
已知:f'(x_0)=0,f''(x_0)>0. 请证明:f(x_0)为极小点
已知:f′(x0)=0,f′′(x0)>0.请证明:f(x0)为极小点
根据极限定义得:
f
′
′
(
x
0
)
=
lim
x
→
x
0
f
′
(
x
)
−
f
′
(
x
0
)
x
−
x
0
>
0
f''(x_0)=\underset{x\to x_0}{\lim}\frac{f'(x)-f'(x_0)}{x-x_0}>0
f′′(x0)=x→x0limx−x0f′(x)−f′(x0)>0
∃
δ
>
0
当
0
<
∣
x
−
x
0
∣
<
δ
时
f
′
(
x
)
x
−
x
0
>
0
\exists \delta >0 当0<|x-x_0|<\delta时 \frac{f'(x)}{x-x _0}>0
∃δ>0当0<∣x−x0∣<δ时x−x0f′(x)>0
有去心邻域
(
x
0
−
δ
,
x
0
)
,
(
x
0
,
x
0
+
δ
)
(x_0-\delta,x_0),(x_0,x_0+\delta)
(x0−δ,x0),(x0,x0+δ)
{
f
′
(
x
)
<
0
x
∈
(
x
0
−
δ
,
x
0
)
f
′
(
x
)
>
0
x
∈
(
x
0
,
x
0
+
δ
)
\begin{cases}f'(x)<0 \qquad x\in (x_0-\delta,x_0) \\f'(x)>0 \qquad x\in (x_0,x_0+\delta)\end{cases}
{f′(x)<0x∈(x0−δ,x0)f′(x)>0x∈(x0,x0+δ)
注解: 当 x ∈ ( x 0 − δ , x 0 ) x\in (x_0-\delta,x_0) x∈(x0−δ,x0)时, ( x − x 0 ) (x-x_0) (x−x0)即分母<0,要保证跟题目所给的条件 f ′ ′ ( x ) > 0 f''(x)>0 f′′(x)>0一致就必须要保证分子也要小于0,分子分母同号才可以让整个式子大于0.因为题目已知: f ′ ( x 0 ) = 0 f'(x_0)=0 f′(x0)=0,所以f’(x)<0。 f ′ ( x ) > 0 同 理 f'(x)>0同理 f′(x)>0同理
一阶导数在去心邻域内先递减到
x
0
x_0
x0点之后递增,根据第一充分条件可得
x
=
x
0
为
极
小
点
x=x_0为极小点
x=x0为极小点
二阶导数小于0为极大点的证明:
已
知
:
f
′
(
x
0
)
=
0
,
f
′
′
(
x
0
)
<
0.
请
证
明
:
f
(
x
0
)
为
极
大
点
已知:f'(x_0)=0,f''(x_0)<0. 请证明:f(x_0)为极大点
已知:f′(x0)=0,f′′(x0)<0.请证明:f(x0)为极大点
根据极限定义得:
f
′
′
(
x
0
)
=
lim
x
→
x
0
f
′
(
x
)
−
f
′
(
x
0
)
x
−
x
0
<
0
f''(x_0)=\underset{x\to x_0}{\lim}\frac{f'(x)-f'(x_0)}{x-x_0}<0
f′′(x0)=x→x0limx−x0f′(x)−f′(x0)<0
∃
δ
<
0
当
0
<
∣
x
−
x
0
∣
<
δ
时
f
′
(
x
)
x
−
x
0
<
0
\exists \delta <0 当0<|x-x_0|<\delta时 \frac{f'(x)}{x-x _0}<0
∃δ<0当0<∣x−x0∣<δ时x−x0f′(x)<0
有去心邻域
(
x
0
−
δ
,
x
0
)
,
(
x
0
,
x
0
+
δ
)
(x_0-\delta,x_0),(x_0,x_0+\delta)
(x0−δ,x0),(x0,x0+δ)
{
f
′
(
x
)
>
0
x
∈
(
x
0
−
δ
,
x
0
)
f
′
(
x
)
<
0
x
∈
(
x
0
,
x
0
+
δ
)
\begin{cases}f'(x)>0 \qquad x\in (x_0-\delta,x_0) \\f'(x)<0 \qquad x\in (x_0,x_0+\delta)\end{cases}
{f′(x)>0x∈(x0−δ,x0)f′(x)<0x∈(x0,x0+δ)
一阶导数在去心邻域内先递减到
x
0
x_0
x0点之后递增,根据第一充分条件可得
x
=
x
0
为
极
大
点
x=x_0为极大点
x=x0为极大点