中值定理6-单调性与极值

单调性与极值

概念:有函数 y = f ( x ) : y=f(x): y=f(x):
1. x ∈ D 1.x\in D 1.xD
2. f ′ ( x ) { = 0 不 存 在 → 不 一 定 2.f'(x)\begin{cases}=0\\不存在 \end{cases} \rightarrow不一定 2.f(x){=0
3. 有 两 种 辨 别 法 可 以 判 断 函 数 的 极 值 点 3.有两种辨别法可以判断函数的极值点 3.
方法一:第一充分条件
{ x &lt; x 0 , f ′ ( x ) &lt; 0 x &gt; x 0 , f ′ ( x ) &gt; 0 ⟹ x = x 0 为 极 小 点 \begin{cases}x&lt;x_0,f&#x27;(x)&lt;0 \\ x&gt;x_0,f&#x27;(x)&gt;0 \end{cases}\Longrightarrow x=x_0 为极小点 {x<x0,f(x)<0x>x0,f(x)>0x=x0

注解: 若 x 位 于 x 0 若x位于x_0 xx0的左边,它的一阶导数小于0,说明函数是在单调递减的;当 x 位 于 x 0 x位于x_0 xx0的右边时,它的一阶导数大于0,又说明函数是在单调递增的。也就是先递减到了 x 0 x_0 x0点之后递增。所以 x 0 x_0 x0是极小值。

{ x &lt; x 0 , f ′ ( x ) &gt; 0 x &gt; x 0 , f ′ ( x ) &lt; 0 ⟹ x = x 0 为 极 大 点 \begin{cases}x&lt;x_0,f&#x27;(x)&gt;0 \\ x&gt;x_0,f&#x27;(x)&lt;0 \end{cases}\Longrightarrow x=x_0 为极大点 {x<x0,f(x)>0x>x0,f(x)<0x=x0

注解: 若 x 位 于 x 0 若x位于x_0 xx0的左边,它的一阶导数大于0,说明函数是在单调递增的;当 x 位 于 x 0 x位于x_0 xx0的右边时,它的一阶导数小于0,又说明函数是在单调递减的。也就是先递增到了 x 0 x_0 x0点之后递减。所以 x 0 x_0 x0是极大值。

方法二:第二充分条件
f ′ ( x 0 ) = 0 , f ′ ′ ( x 0 ) { &gt; 0 , 极 小 点 &lt; 0 , 极 大 点 f&#x27;(x_0)=0,f&#x27;&#x27;(x_0)\begin{cases}&gt;0,极小点\\ &lt;0,极大点 \end{cases} f(x0)=0,f(x0){>0<0

注解: 当 x 0 x_0 x0点的一阶导数等于0时,若 x 0 x_0 x0点的二阶导数大于0则该点为极小点,若 x 0 x_0 x0点的二阶导数小于0则该点为极大点。

二阶导数大于0为极小点的证明:

已 知 : f ′ ( x 0 ) = 0 , f ′ ′ ( x 0 ) &gt; 0. 请 证 明 : f ( x 0 ) 为 极 小 点 已知:f&#x27;(x_0)=0,f&#x27;&#x27;(x_0)&gt;0. 请证明:f(x_0)为极小点 f(x0)=0,f(x0)>0.f(x0)
根据极限定义得:

f ′ ′ ( x 0 ) = lim ⁡ x → x 0 f ′ ( x ) − f ′ ( x 0 ) x − x 0 &gt; 0 f&#x27;&#x27;(x_0)=\underset{x\to x_0}{\lim}\frac{f&#x27;(x)-f&#x27;(x_0)}{x-x_0}&gt;0 f(x0)=xx0limxx0f(x)f(x0)>0
∃ δ &gt; 0 当 0 &lt; ∣ x − x 0 ∣ &lt; δ 时 f ′ ( x ) x − x 0 &gt; 0 \exists \delta &gt;0 当0&lt;|x-x_0|&lt;\delta时 \frac{f&#x27;(x)}{x-x _0}&gt;0 δ>00<xx0<δxx0f(x)>0

有去心邻域 ( x 0 − δ , x 0 ) , ( x 0 , x 0 + δ ) (x_0-\delta,x_0),(x_0,x_0+\delta) (x0δ,x0),(x0,x0+δ)
{ f ′ ( x ) &lt; 0 x ∈ ( x 0 − δ , x 0 ) f ′ ( x ) &gt; 0 x ∈ ( x 0 , x 0 + δ ) \begin{cases}f&#x27;(x)&lt;0 \qquad x\in (x_0-\delta,x_0) \\f&#x27;(x)&gt;0 \qquad x\in (x_0,x_0+\delta)\end{cases} {f(x)<0x(x0δ,x0)f(x)>0x(x0,x0+δ)

注解: 当 x ∈ ( x 0 − δ , x 0 ) x\in (x_0-\delta,x_0) x(x0δ,x0)时, ( x − x 0 ) (x-x_0) (xx0)即分母<0,要保证跟题目所给的条件 f ′ ′ ( x ) &gt; 0 f&#x27;&#x27;(x)&gt;0 f(x)>0一致就必须要保证分子也要小于0,分子分母同号才可以让整个式子大于0.因为题目已知: f ′ ( x 0 ) = 0 f&#x27;(x_0)=0 f(x0)=0,所以f’(x)<0。 f ′ ( x ) &gt; 0 同 理 f&#x27;(x)&gt;0同理 f(x)>0

一阶导数在去心邻域内先递减到 x 0 x_0 x0点之后递增,根据第一充分条件可得
x = x 0 为 极 小 点 x=x_0为极小点 x=x0

二阶导数小于0为极大点的证明:

已 知 : f ′ ( x 0 ) = 0 , f ′ ′ ( x 0 ) &lt; 0. 请 证 明 : f ( x 0 ) 为 极 大 点 已知:f&#x27;(x_0)=0,f&#x27;&#x27;(x_0)&lt;0. 请证明:f(x_0)为极大点 f(x0)=0,f(x0)<0.f(x0)
根据极限定义得:

f ′ ′ ( x 0 ) = lim ⁡ x → x 0 f ′ ( x ) − f ′ ( x 0 ) x − x 0 &lt; 0 f&#x27;&#x27;(x_0)=\underset{x\to x_0}{\lim}\frac{f&#x27;(x)-f&#x27;(x_0)}{x-x_0}&lt;0 f(x0)=xx0limxx0f(x)f(x0)<0
∃ δ &lt; 0 当 0 &lt; ∣ x − x 0 ∣ &lt; δ 时 f ′ ( x ) x − x 0 &lt; 0 \exists \delta &lt;0 当0&lt;|x-x_0|&lt;\delta时 \frac{f&#x27;(x)}{x-x _0}&lt;0 δ<00<xx0<δxx0f(x)<0

有去心邻域 ( x 0 − δ , x 0 ) , ( x 0 , x 0 + δ ) (x_0-\delta,x_0),(x_0,x_0+\delta) (x0δ,x0),(x0,x0+δ)
{ f ′ ( x ) &gt; 0 x ∈ ( x 0 − δ , x 0 ) f ′ ( x ) &lt; 0 x ∈ ( x 0 , x 0 + δ ) \begin{cases}f&#x27;(x)&gt;0 \qquad x\in (x_0-\delta,x_0) \\f&#x27;(x)&lt;0 \qquad x\in (x_0,x_0+\delta)\end{cases} {f(x)>0x(x0δ,x0)f(x)<0x(x0,x0+δ)

一阶导数在去心邻域内先递减到 x 0 x_0 x0点之后递增,根据第一充分条件可得
x = x 0 为 极 大 点 x=x_0为极大点 x=x0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值