线性回归 梯度下降算法 overshot the minimun现象

在梯度下降算法中,理论上有一个步长steep需要我们设置。steep的设置非常重要,如果设置不当,我们的梯度下降算法可能就得不到我们想要的结果。

一:步长不当导致的问题

如果步长太短,很显然我们训练集训练的时间就会加长。如果训练集比较多,这也是致命的。

如果步长太长,可能出现Overshoot the minimun(越过极小值点)现象。甚至梯度下降算法无法收敛,找不到我们要的极小值。


二:tensorflow 解决步长问题

line search (数学渣渣,没看懂)算法能解决步长问题。结果是在不断逼近最小值时,步长会不断减小。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值