在梯度下降算法中,理论上有一个步长steep需要我们设置。steep的设置非常重要,如果设置不当,我们的梯度下降算法可能就得不到我们想要的结果。
一:步长不当导致的问题
如果步长太短,很显然我们训练集训练的时间就会加长。如果训练集比较多,这也是致命的。
如果步长太长,可能出现Overshoot the minimun(越过极小值点)现象。甚至梯度下降算法无法收敛,找不到我们要的极小值。
二:tensorflow 解决步长问题
line search (数学渣渣,没看懂)算法能解决步长问题。结果是在不断逼近最小值时,步长会不断减小。