Leetcode 63. Unique Paths II 不同路径 II

Leetcode 63. Unique Paths II 不同路径 II

标签: Leetcode


题目地址: https://leetcode-cn.com/problems/unique-paths-ii/

题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 10 来表示。

说明:m 和 n 的值均不超过 100。

示例 1:

输入:
[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

算法思想

和上面的题目不同路径类似,可以直接使用动态规划来做,只是多了个条件,在进行动态规划的时候要进行判断,判断当前位置是否为障碍物,如果为障碍物,则清为0,因为不可能通过这个地方到达最终地址,所以路径也就为0个。除此之外还要注意的是,刚开始进行一次判断,如果没有图或者出门就是障碍,可以直接返回。

python代码

class Solution(object):
    def uniquePathsWithObstacles(self, obstacleGrid):
        """
        :type obstacleGrid: List[List[int]]
        :rtype: int
        """
        m = len(obstacleGrid)
        n = len(obstacleGrid[0])
        if m==0 or obstacleGrid[0][0]==1: # 没有路,或者出门就堵了
            return 0
        dp = [[1 for j in range(n)] for i in range(m)] #
        # 从0,0开始发散
        for i in range(m):
            for j in range(n):
                if obstacleGrid[i][j] == 1: dp[i][j] =0 # 如果障碍,则不能通过,所以置为0
                elif j==0: dp[i][j] = dp[i-1][j] # j==0即为最左边的一列,所以和上面相关
                elif i==0: dp[i][j] = dp[i][j-1]
                else: dp[i][j] = dp[i-1][j] + dp[i][j-1]
        return dp[m-1][n-1]

参考:

https://blog.csdn.net/guoziqing506/article/details/51671722

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值