Leetcode 63. Unique Paths II 不同路径 II
标签: Leetcode
题目地址: https://leetcode-cn.com/problems/unique-paths-ii/
题目描述
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1
和 0
来表示。
说明:m 和 n 的值均不超过 100。
示例 1:
输入:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2
条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
算法思想
和上面的题目不同路径类似,可以直接使用动态规划来做,只是多了个条件,在进行动态规划的时候要进行判断,判断当前位置是否为障碍物,如果为障碍物,则清为0,因为不可能通过这个地方到达最终地址,所以路径也就为0个。除此之外还要注意的是,刚开始进行一次判断,如果没有图或者出门就是障碍,可以直接返回。
python代码
class Solution(object):
def uniquePathsWithObstacles(self, obstacleGrid):
"""
:type obstacleGrid: List[List[int]]
:rtype: int
"""
m = len(obstacleGrid)
n = len(obstacleGrid[0])
if m==0 or obstacleGrid[0][0]==1: # 没有路,或者出门就堵了
return 0
dp = [[1 for j in range(n)] for i in range(m)] #
# 从0,0开始发散
for i in range(m):
for j in range(n):
if obstacleGrid[i][j] == 1: dp[i][j] =0 # 如果障碍,则不能通过,所以置为0
elif j==0: dp[i][j] = dp[i-1][j] # j==0即为最左边的一列,所以和上面相关
elif i==0: dp[i][j] = dp[i][j-1]
else: dp[i][j] = dp[i-1][j] + dp[i][j-1]
return dp[m-1][n-1]
参考: