数据结构与算法笔记之--时间复杂度和空间复杂度

 上一篇中我们提到设计算法要尽量的提高效率,这里效率高一般指的是算法的执行时间。空间复杂度,是指程序在运行时对内存空间的一个占用量。一般说算法的效率都指时间效率。

度量一个算法的执行时间一般分两种:事后统计方法和是事前分析估算方法

事后统计方法

这种方法主要是通过设计好的测试程序和数据,利用计算机计时器对不同算法编制的程序的运行时间进行比较,从而确定算法效率的高低。

但是这种方法的缺陷很大:

一般依据算法事先编制好测试程序,通常需要花费大量时间和精力,如果测试完发现是糟糕的算法,那么之前的所有时间和精力就白费了。

同样的算法在不同配置的机器上测试出来的结果差别往往很大。

事前分析估算方法

这种方法是在计算机程序编写前,依据统计方法对算法进行估算。

经过总结,我们发现一个高级语言编写的程序在计算机上运行时所消耗的时间取决于下列因素:

1、算法采用的策略,方案

2、编译产生的代码质量

3、问题的输入规模

4、机器执行指令的速度

由此可见,抛开这些与计算机硬件、软件有关的因素,一个程序的运行时间依赖于算法的好坏和问题的输入规模。(所谓的问题输入规模是指输入量的多少)

举个栗子:

问题:计算1加到100的和

算法一:

int i, sum = 0, n = 100;   // 执行1次
for( i=1; i <= n; i++ )    // 执行了n+1次
{
sum = sum + i;          // 执行n次
}
算法二:

int sum = 0, n = 100;     // 执行1次
sum = (1+n)*n/2;          // 执行1次

可以看出,算法一总共执行了2n+2次,算法二执行了2次,如果去掉头尾判断的开销,把循环看作一个整体,其实就是n和1的差距(2n+2和2 与 n和1看起来差距很大,似乎并不能相提并论,但其实 研究算法的复杂度,侧重的是研究算法随着输入规模扩大增长量的一个抽象,而不是精确地定位需要执行多少次),这样很明白的看出对于解决同一个问题,不同的策略对于执行时间的影响。

函数的渐进增长

给定两个函数f(n)和g(n),如果存在一个整数N,使得对于所有的n>N,f(n)总是比g(n)大,那么,我们说f(n)的增长渐近快于g(n)。


时间复杂度

定义:在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作:T(n)= O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。

分析下定义主要有下面三点:

1、执行次数==时间

2、这样用大写O()来体现算法时间复杂度的记法,我们称之为大O记法。

3、一般情况下,随着输入规模n的增大,T(n)增长最慢的算法为最优算法。

通过算法的得出的关于问题规模n的函数关系式,要进行推导才能得出最后我们便于分析比较的大O阶

大O阶推导的方法如下:

1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则把最高阶项的系数变为1。

最后得到的结果就是大O阶。

下面是图示:




常用的时间复杂度所耗费的时间从小到大依次是:O(1) < O(logn) < (n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)

算法的最坏情况与平均情况

比如,查找一个有n个随机数字数组中的某个数字,最好的情况是第一个数字就是,那么算法的时间复杂度为O(1),但也有可能这个数字就在最后一个位置,那么时间复杂度为O(n)。

平均运行时间是期望的运行时间。

最坏运行时间是一种保证。在应用中,这是一种最重要的需求,通常除非特别指定,我们提到的运行时间都是最坏情况的运行时间。

空间复杂度

定义:算法的空间复杂度通过计算算法所需的存储空间实现,算法的空间复杂度的计算公式记作:S(n)=O(f(n)),其中,n为问题的规模,f(n)为语句关于n所占存储空间的函数。

在写代码时,完全可以用空间来换去时间。

举个栗子:

要判断某年是不是闰年。

第一种方法,我们在每拿到一个年份的时候,可以写一个计算算法来判断这个年份是不是闰年。

第二种方法是,事先建立一个有2050个元素的数组,然后把所有的年份按下标的数字对应,如果是闰年,则此数组元素的值是1,如果不是元素的值则为0。这样,所谓的判断某一年是否为闰年就变成了查找这个数组某一个元素的值的问题。

相比之下,第一种方法相比起第二种来说很明显非常节省空间,但每一次查询都需要经过一系列的计算才能知道是否为闰年。第二种方法虽然需要在内存里存储2050个元素的数组,但是每次查询只需要一次索引判断即可。

这就是通过一笔空间上的开销来换取计算时间开销的小技巧。到底哪一种方法好?就要具体看我们对空间和时间的要求来定了。



最后,通常,我们都是用“时间复杂度”来指运行时间的需求,是用“空间复杂度”指空间需求。当直接要让我们求“复杂度”时,通常指的是时间复杂度。显然对时间复杂度的追求更是属于算法的潮流!


END***********************************************************************************************************************************************************************************

与君共勉之!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值