tensorflow中的padding/卷积核大小/feature map大小

记录一下
W: 原图尺寸
F:滤波器尺寸
P:padding大小(指单边padding大小)
S:stride

卷积后的尺寸是:
⌊ ( W − F + 2 P ) / S + 1 ⌋ \lfloor (W − F + 2P )/S+1 \rfloor (WF+2P)/S+1 × ⌊ ( W − F + 2 P ) / S + 1 ⌋ \lfloor (W − F + 2P )/S+1 \rfloor (WF+2P)/S+1 ⌊   ⌋ \lfloor \, \rfloor 表示向下取整

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值