论文百篇计划第二篇,cvpr2018的一篇文章,引用量1800。作者来自密歇根大学安娜堡分校。
最近的研究表明目前DNN容易收到对抗样本的攻击,理解物理世界中的对抗样本对发展弹性学习算法非常重要。我们提出种通用的攻击算法,Robust Physical Perturbation(RP2),生成鲁棒的对抗样本在不同的物理环境下。针对道路标志牌的攻击表明,我们的物理攻击能够在多种环境条件下实现较高的准确率。由于缺少标准的测试方法,我们提出两阶段的评估方法,包括实验室阶段和野外阶段。通过这种方法,我们评估了有效性,100% 在实验室环境下,84.8%在野外。
1. 介绍
选择道路标志牌的原因:(1) 相对简单,因此更难攻击。(2)存在一个噪声无约束的环境,例如距离和角度。(3)标志牌对道路安全很重要。(4) 攻击者能力有限,攻击不了车辆本身。
在物理噪声环境下,目前的digital-only algorithms产生的噪声可能被破坏。对道路标志牌来说,主要环境变量是距离和角度。其他挑战包括:
(1) 扰动幅度太小导致摄像机捕捉不到。
(2) 目前的攻击占满整个背景,在现实中,背景会随着视角变化。
(3)制造过程的不完美。比如打印过程。
为了创造鲁棒的噪声,我们提出通过实验拘束或者合成的变换,从一个分布中采样,来模拟物理的动态变化(比如距离或者角度)。 pipeline overview如下图所示:
使用提出的算法,我们评估了扰动在物理物体上的有效性,实现表明我们可以使用低成本的技术修改物体,对DNN分类器造成可靠的分类误差。例如我们可以讲物理标识修改成限速标志。我们设计我们的扰动类似于涂鸦,从而不会引起人的怀疑。
由于缺乏一个标准来评估物理攻击,我们提出一种标准:(1) 实验室环境,摄像机在多个距离和视角变化。(2)野外。我们开一辆车驶向十字路口。模拟自动驾驶汽车。我们测试我们的攻击算法使用这个pipeline,发现我们的攻击是鲁棒的。
本文的贡献:
1. 我们提出了一种新的攻击方法用于鲁棒的物理扰动。在一系列动态物理环境下。
2.提出了标准化的评估方法。
3. 我们评估了我们的攻击针对两个标准化的分类架构: LISA- CNN和GTSRB CNN。使用两种攻击(poster 攻击和sticker 攻击), 我们表明poster攻击在静态到达100% 在drive-by达到了80%。
4。 为了证明通用性,我们将一张贴纸放在微波炉上,让其被识别成手机。
2. 相关工作
Kurakin表明打印的对抗样本依然可以被误分类。Athalye和Sutskever提高了这个工作, 生成对抗样本对两个维度的合成变换鲁棒。(参见Anish Athalye, Logan Engstrom, Andrew Ilyas, Kevin Kwok Proceedings of the 35th International Conference on Machine Learning, PMLR 80:284-293, 2018. 引用量1148,打印海龟就是出自这篇文章)本文进一步研究了当环境变化时,攻击的可行性。我们的poster attack类似于Athalye的攻击,但我们进一步探究了sticker攻击。Athalye还3D打印了物体,但主要区别在于:(1)Athelye的工作在优化的过程中主要使用了合成的变换,可能会错过微小的物理影响。我们的工作同时考虑了物理和合成的变换。(2)我们的工作修改了真实大小的物体,(3)我们模拟了更真实的测试条件
Sharif攻击人脸识别系统通过打印眼镜框。他们的工作表明成功的物理攻击在相对稳定的物理条件,包括小的姿态变化,摄像机的距离和角度,光照。但自动驾驶的变化更巨大,因此我们选择固有的无约束的环境条件。
Lu等人通过道路标识牌实验说明道路标识牌的detector不能被攻击成功,在我们的工作中,我们专注于classifier的攻击,表明他们的安全脆弱性。
3. 针对物理目标的攻击
3.1 物理挑战
环境条件: 距离角度,光照,照相机和信号牌的灰尘
空间约束:不能修改背景
物理限制:扰动不能太小,不然摄像机捕捉不到。
制造误差:打印机可能有色差
3.2 鲁棒的物理扰动
原始的目标函数可以写成:
其中J(.,.) 是衡量模型预测和目标标签之间的差别,\gamma是正则化系数。
为了模拟真实的物理变化,我们在优化过程中,从一组真实的照片中采样。对于合成的变化,我们随机裁剪,改变亮度和增加空间变化来仿真其他可能的条件。
为了保证扰动只添加在目标区域,我们引入了一个mask,mask还帮助我们生成对人眼不明显的扰动。为了确定mask的最佳区域,首先用L1损失找到最佳的mask的点,然后用L2损失确定这些点的值。(为什么L1可以减少非零点的个数,可以参看https://zhuanlan.zhihu.com/p/301289487)为了计入制造误差,我们添加了一个不可打印分数NPS(参见sharif)的论文,最终的计算损失函数为
T(.) 是一个对齐函数,将对标识牌的变换同样应用到扰动上。
4. 实验
4.1 实验设计:
数据集采用LISA和GTSRB数据集,这两个数据集都是交通信号的数据集。我们设计了两阶段的评估方法,第一个阶段是实验室环境下,第二个阶段是野外测试。
4.2 实验结果