@[TOC] (极大似然估计VS贝叶斯推断VS朴素贝叶斯法)

极大似然估计

知乎玩家霍华德对极大似然估计理解
知乎玩家马同学对极大似然估计理解
通过事实,推断出最有可能的概率情况,就是最大似然估计。
我觉得霍华德那个例子最有助于理解极大似然估计!!!!

  • 我们丢100次硬币,出现正面的次数为 53 53 53,出现反面的概率为 47 47 47,记,正面出现的概率为 μ \mu μ,则有 似 然 函 数 : P ( D ∣ μ ) = μ 5 3 × ( 1 − μ ) 47 似然函数:P(D|\mu) = \mu^53 \times (1 - \mu)^{47} P(Dμ)=μ53×(1μ)47 μ \mu μ求导,令其导为0,可得 μ = 0.53 \mu = 0.53 μ=0.53
  • 我们丢 n n n次硬币,出现正面的次数为 n 1 n_1 n1,记,正面出现的概率为 μ \mu μ,则有 似 然 函 数 : P ( D ∣ μ ) = μ n 1 × ( 1 − μ ) n − n 1 似然函数:P(D|\mu) = \mu^{n_1} \times (1 - \mu)^{n - n_1} P(Dμ)=μn1×(1μ)nn1对两边取对数, μ \mu μ求导,令其导为0,可得 μ = n 1 n \mu = \frac{n_1}{n} μ=nn1

根据上面例子,可知在不同实验下,正面出现得概率是不同得。
也验证了第一句话:通过事实,推断出最有可能的概率情况,就是最大似然估计。

根据最大似然估计,硬币正面的概率,就是正面出现的概率除以总的投掷次数,换句话说,就是正面出现的频率~这就是频率学派眼中估计概率的方式。
可是这样估计,如果我只投掷了1次,正面出现1次,按照最大似然估计我硬币正面的概率就是1,这是明显有问题的。
贝叶斯学派认为应该把这些做实验之前的经验(先验概率)加入到参数估计的过程中,于是提出了最大后验估计~

贝叶斯推断

知乎马同学对贝叶斯推断理解
对贝叶斯公式得理解: P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P ( B ) P(A|B) = P(A)\frac{P(B|A)}{P(B)} P(AB)=P(A)P(B)P(BA)结合马同学开车得引子理解贝叶斯公式
A : 出 现 十 字 路 口 得 概 率 A:出现十字路口得概率 A B : 打 右 转 向 灯 得 概 率 B:打右转向灯得概率 B A ∣ B : 打 右 转 向 灯 得 时 候 在 十 字 路 口 得 概 率 A|B:打右转向灯得时候在十字路口得概率 AB B ∣ A : 在 十 字 路 口 打 右 转 向 灯 的 概 率 B|A:在十字路口打右转向灯的概率 BA
结合贝叶斯很像大脑的认知

贝叶斯定理现在很多人在研究,就是因为不少人相信贝叶斯定理和人脑的工作机制很像,因此称为机器学习的基础。

比如,和对方聊天的时候,如果对方说出“虽然”两字,就大概可以猜到,对方会继续说“但是”。
P ( A ) : 先 验 分 布 P(A):先验分布 P(A) P ( A ∣ B ) : 后 验 分 布 P(A|B):后验分布 P(AB) P ( B ∣ A ) , P ( B ) : 实 验 数 据 P(B|A),P(B):实验数据 P(BA)P(B)
给一个吃面包的例子,记吃面包为 P ( A ) P(A) P(A)

  • 如果是最大似然估计,那么我们不管,选择的数据是来自早餐、中餐、晚餐,拿到数据,就用构建最大似然函数,两边对数求导,球的P(A)的值,就说吃面包的概率为 P ( A ) P(A) P(A)
  • 如果用贝叶斯推断的话,我们会分三种情况: P ( A ∣ 早 餐 ) P(A|早餐) P(A) P ( A ∣ 中 餐 ) P(A|中餐) P(A) P ( A ∣ 晚 餐 ) P(A|晚餐) P(A)分别计算其概率。

朴素贝叶斯法

以下为《统计学习方法》第四章总结
学习模型
训练数据集 T = ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x N , y N ) , x i : n 维 的 特 征 向 量 , y ⊂ c 1 , c 2 , . . . , c k T = {(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)},x_i:n维的特征向量,y \subset { {c_1,c_2,...,c_k}} T=(x1,y1),(x2,y2),,(xN,yN)xin,yc1,c2,...,ck
我们首先假设:P(X,Y)独立同分布产生
确定先验概率分布: P ( Y = c k ) , k = 1 , 2 , … , K P(Y = c_k),k = 1,2,\ldots,K P(Y=ck),k=1,2,,K
确定条件概率分布(实验数据) P ( X = x ∣ Y = c k ) = P ( X ( 1 ) = x ( 1 ) , X ( 2 ) = x ( 2 ) , … , X ( n ) = x ( n ) ∣ Y = c k ) k = 1 , 2 , … , K P(X = x|Y = c_k) = P(X^{(1)} = x^{(1)},X^{(2)} = x^{(2)},\ldots,X^{(n)} = x^{(n)}|Y = c_k) \quad k = 1,2,\ldots,K P(X=xY=ck)=P(X(1)=x(1),X(2)=x(2),,X(n)=x(n)Y=ck)k=1,2,,K ⇓ \Downarrow P ( X = x ∣ Y = c k ) = ∏ j = 1 n P ( X i = x i ∣ c k ) P(X = x|Y = c_k) = \prod_{j=1}^{n}P(X^i = x^i |c_k) P(X=xY=ck)=j=1nP(Xi=xick)
于是,可以学习到联合分布 P ( X , Y ) P(X,Y) P(X,Y)
朴素贝叶斯分类
确定后验概率: P ( Y = c k ∣ X = x ) = P ( Y = c k ) P ( X = x ∣ Y = c k ) ∑ k P ( Y = c k ) P ( X = x ∣ Y = c k ) P(Y = c_k| X =x) = P(Y = c_k)\frac{P(X = x|Y = c_k)}{\sum_k{P(Y = c_k)P(X = x|Y=c_k)}} P(Y=ckX=x)=P(Y=ck)kP(Y=ck)P(X=xY=ck)P(X=xY=ck)
因此,处理分类问题时注意:(1)特征相互独立(2)根据训练集求出上述公式所有得值(3)根据测试数据得样本特征,去训练集所得参数中,挑相应得概率,计算 P ( c k ∣ X ) P(c_k|X) P(ckX),最大概率得类,即为预测分类。(4)当测试集中出现得特征,训练集没有,此时会出现较大得误差,因此引入带参数得贝叶斯估计模型(见P51)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值