【阅读笔记】Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning-ICCV-2021

 Abstract

在少样本学习场景中,挑战在于当每个任务只有很少的标记示例可用时,在新的未见示例上泛化并表现良好。与模型无关的元学习(MAML)因其灵活性和对各种问题的适用性而成为具有代表性的少样本学习方法之一。然而,MAML 及其变体通常采用简单的损失函数,而没有任何辅助损失函数或正则化项来帮助实现更好的泛化。问题在于每个应用和任务可能需要不同的辅助损失函数,特别是当任务多样化和不同时。我们没有尝试为每个应用程序和任务手动设计辅助损失函数,而是引入了一个新的元学习框架,该框架具有适应每个任务的损失函数。我们提出的框架名为 Meta-Learning with Task-Adaptive Loss Function (MeTAL),展示了跨多个领域的有效性和灵活性,例如少样本分类和少样本回归。


Introduction

在元学习算法中,基于优化的元学习因其灵活性可以跨不同领域应用而受到不同领域的关注。基于优化的元学习算法通常被表述为双层优化。在这样的公式中,外环优化训练学习算法以实现泛化(微调),而内环优化使用学习算法使基础学习器适应具有少量示例的新任务(元学习过程)

与模型无关的元学习 (MAML)是一种开创性的基于优化的元学习方法,它学习一组初始网络权重值以实现泛化。学习到的初始化是适应新任务的良好起点,只需很少的示例和很少的更新。尽管将学习到的初始化训练为一个很好的起点,但 MAML 经常面临实现泛化的困难,特别是当训练和测试阶段之间的任务多样化或显着不同时。一些工作试图通过尝试找到更好的初始化或更好的快速适应过程(内循环更新规则。尽管其他辅助损失函数,例如2正则化项,可以帮助实现更好的泛化,然而,这些方法在内环优化中采用简单的损失函数(例如分类中的交叉熵)。

另一方面,我们专注于为 MAML 框架中的内循环优化设计更好的损失函数。如图 1 所示,我们提出了一个名为 Meta-Learning with Task-Adaptive LLoss Function (MeTAL) 的新框架来学习自适应损失函数,从而更好地泛化每个任务。具体来说,MeTAL 通过两个元学习器学习任务自适应损失函数:一个元学习器用于学习损失函数一个元学习器用于生成转换学习损失函数的参数。我们的任务自适应损失函数被设计为灵活的,因为标记(例如支持)和未标记(例如查询)示例可以一起使用,以便在内循环优化期间使基础学习器适应每个任务。


Method

1 预先准备

1.1 问题定义


1.2 MAML

MAML 将先验知识编码为可学习的初始化,作为跨任务的基础学习者网络权重的一组良好的初始值。这个公式,其中基学习器的元学习初始化,导致双层优化:内循环优化和外循环优化。

对于内循环优化(在基类上进行训练,得到好的初始化参数),基础学习器使用支持示例 \large D_i^s 进行微调,从可学习的初始化𝜃到每个任务,通过梯度下降进行固定数量的权重更新。因此,在初始化𝜃𝑖,0=𝜃之后,任务适应目标通过梯度下降最小化。第 j 步的内循环优化表示为:

外环优化(在新类上进行微调)的情况下,元学习初始化θ由具有参数θi(或θi,J)的任务特定基础学习器在未见过的查询示例D_i^Q上的泛化性能进行评估。然后将未见过示例的评估泛化用作反馈信号来更新初始化θ。


2 MeTAL

2.1 Overview

我们从元学习一个内环优化损失函数 Lφ(·) 开始,它由一个具有元学习参数 φ 的小型神经网络建模。因此,等式(3)中的内循环更新变为:

 其中𝜏𝑖,𝑗 表示 𝑇𝑖 在时间步长j 的任务状态,在典型的元学习公式的情况下,它通常只是支持集D_i^s

由于不同的任务(特别是在跨域场景下)在适应过程中可能更喜欢不同的正则化或辅助损失函数,甚至是损失函数本身以实现更好的泛化,我们的目标是学习使损失函数本身适应每个任务

为了使元学习损失函数具有自适应性,可以应用仿射变换来使损失函数适应给定的任务。通过仿射变换动态变换损失函数参数φ

 其中φ是元可学习损失函数参数,γ,β 是元学习器 g(𝜏𝑗;ψ) 生成的变换参数,由ψ 参数化。

为了训练我们的元学习框架来泛化不同的任务,包括优化参数θ、φ和ψ,在给定相应任务特定学习器θi及其在查询集D_i^Q中的示例的情况下,对每个任务Ti执行外环优化:

 我们方法的整体训练过程总结在算法 1 中。


 2.2 任务自适应损失函数

由于我们的损失元学习器 Lφ 和元学习器 𝑔𝜓 是使用神经网络建模的,因此它们的输入可以被公式化为包含有关中间学习状态的辅助任务特定信息,我们将其定义为任务状态τ。在给定任务 Ti 的第 j 个内循环步骤中,除了经典损失信息 L(𝐷𝑖𝑆 ;𝜃𝑖,𝑗)(在标记的支持集示例 𝐷𝑖𝑆上评估),辅助学习状态信息,例如网络权重𝜃𝑖,𝑗和输出值 𝑓(𝑥𝑖𝑠;𝜃𝑖,𝑗) 可以包含在任务状态𝜏𝑖,𝑗中。

此外,我们还可以在任务状态中包含来自查询集中的未标记示例 𝑥𝑖𝑞 的基础学习器响应,这使得内循环优化能够执行半监督学习。这表明我们的框架可以使用这种额外的特定于任务的信息进行快速适应。在算法 2 中组织了用于监督和半监督设置的具有任务自适应损失函数的内环优化过程


 实验

 

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值