import cv2
import numpy as np
# 函数cv2.pyrDown()是降低图像分辨率,变为原来一半
img = cv2.pyrDown(cv2.imread("G:/Python_code/OpenCVStudy/images/timg.jpg", cv2.IMREAD_UNCHANGED))
# 将图片转化为灰度,再进行二值化
ret, thresh = cv2.threshold(cv2.cvtColor(img.copy(), cv2.COLOR_BGR2GRAY), 127, 255, cv2.THRESH_BINARY)
image, contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
# 边界框:
# find bounding box coordinates
# boundingRect()将轮廓转化成(x,y,w,h)的简单边框,cv2.rectangle()画出矩形[绿色(0, 255, 0)]
x, y, w, h = cv2.boundingRect(c)
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
# 最小矩形区域:
# 1 计算出最小矩形区域 2 计算这个的矩形顶点 3 由于计算出来的是浮点数,而像素是整型,所以进行转化 4 绘制轮廓[红色(0, 0, 255)]
# find minimum area
rect = cv2.minAreaRect(c)
# calculate coordinates of the minimum area rectangle
box = cv2.boxPoints(rect)
# normalize coordinates to integers
box = np.int0(box)
# draw contours
cv2.drawContours(img, [box], 0, (0, 0, 255), 3)
# 最小闭圆的轮廓:
# calculate center and radius of minimum enclosing circle[蓝色(255, 0, 0)]
(x, y), radius = cv2.minEnclosingCircle(c)
# cast to integers
center = (int(x), int(y))
radius = int(radius)
# draw the circle
img = cv2.circle(img, center, radius, (255, 0, 0), 2)
# 轮廓检测:绘制轮廓
cv2.drawContours(img, contours, -1, (255, 0, 0), 1)
cv2.imshow("contours", img)
cv2.waitKey()
cv2.destroyAllWindows()
OpenCV轮廓、边界框、最小矩形、最小闭圆检测
最新推荐文章于 2024-09-26 16:04:41 发布