numpy.reshape( )用法总结

本文介绍了 NumPy 中的 reshape 方法,详细解释了如何通过 reshape 改变数组的形状,包括一维、二维和三维数组的变化过程及注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 numpy.reshape(a, newshape, order=’C’)

a:array_like
    要重新形成的数组。
newshape:int或tuple的整数
    新的形状应该与原始形状兼容。如果是整数,则结果将是该长度的1-D数组。一个形状维度可以是-1。在这种情况下,从数组的长度和其余维度推断该值。
order:{'C','F','A'}可选
    使用此索引顺序读取a的元素,并使用此索引顺序将元素放置到重新形成的数组中。'C'意味着使用C样索引顺序读取/写入元素,最后一个轴索引变化最快,回到第一个轴索引变化最慢。'F'意味着使用Fortran样索引顺序读取/写入元素,第一个索引变化最快,最后一个索引变化最慢。注意,'C'和'F'选项不考虑底层数组的内存布局,而只是参考索引的顺序。'A'意味着在Fortran类索引顺序中读/写元素,如果a 是Fortran 在内存中连续的,否则为C样顺序。

 引入numpy--->np 

>>> import numpy as np


>>> a = np.array([1,2,3,4,5,6,7,8])
>>>
>>>a
array([1,2,3,4,5,6,7,8])

使用reshape( )方法来更改数组的形状,可以看到数组d成为了一个二维数组

>>> d = a.reshape((2,4))
>>> d
array([[1,2,3,4],
       [5,6,7,8]])

#同理还可以得到一个三维数组 

>>> f = a.reshape((2,2,2))
>>> f
array([[[1,100],
        [3,4]],

       [[5,6],
        [7,8]]])

  

 

 

 

       数组新的shape属性应该要与原来的配套,如果等于-1的话,那么Numpy会根据剩下的维度计算出数组的另外一个shape属性值。举几个例子或许就清楚了,有一个数组z,它的shape属性是(4, 4)

z = np.array([[1, 2, 3, 4],
          [5, 6, 7, 8],
          [9, 10, 11, 12],
          [13, 14, 15, 16]])
z.shape
(4, 4)

z.reshape(-1, 2)

z.reshape(-1, 2)
 array([[ 1,  2],
        [ 3,  4],
        [ 5,  6],
        [ 7,  8],
        [ 9, 10],
        [11, 12],
        [13, 14],
        [15, 16]])

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值