numpy.reshape(a, newshape, order=’C’)
a:array_like
要重新形成的数组。
newshape:int或tuple的整数
新的形状应该与原始形状兼容。如果是整数,则结果将是该长度的1-D数组。一个形状维度可以是-1。在这种情况下,从数组的长度和其余维度推断该值。
order:{'C','F','A'}可选
使用此索引顺序读取a的元素,并使用此索引顺序将元素放置到重新形成的数组中。'C'意味着使用C样索引顺序读取/写入元素,最后一个轴索引变化最快,回到第一个轴索引变化最慢。'F'意味着使用Fortran样索引顺序读取/写入元素,第一个索引变化最快,最后一个索引变化最慢。注意,'C'和'F'选项不考虑底层数组的内存布局,而只是参考索引的顺序。'A'意味着在Fortran类索引顺序中读/写元素,如果a 是Fortran 在内存中连续的,否则为C样顺序。
引入numpy--->np
>>> import numpy as np
>>> a = np.array([1,2,3,4,5,6,7,8])
>>>
>>>a
array([1,2,3,4,5,6,7,8])
使用reshape( )方法来更改数组的形状,可以看到数组d成为了一个二维数组
>>> d = a.reshape((2,4))
>>> d
array([[1,2,3,4],
[5,6,7,8]])
#同理还可以得到一个三维数组
>>> f = a.reshape((2,2,2))
>>> f
array([[[1,100],
[3,4]],
[[5,6],
[7,8]]])
数组新的shape属性应该要与原来的配套,如果等于-1的话,那么Numpy会根据剩下的维度计算出数组的另外一个shape属性值。举几个例子或许就清楚了,有一个数组z,它的shape属性是(4, 4)
z = np.array([[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16]])
z.shape
(4, 4)
z.reshape(-1, 2)
z.reshape(-1, 2)
array([[ 1, 2],
[ 3, 4],
[ 5, 6],
[ 7, 8],
[ 9, 10],
[11, 12],
[13, 14],
[15, 16]])