两种ICP的改进算法:PLICP与NICP

本文详细介绍了ICP算法的两种改进版本:PLICP(点到线对应)和NICP(考虑法向量的点云配准)。PLICP通过匹配点与直线提高匹配精度,加速收敛速度,而NICP结合法向量信息,增强配准的稳健性和准确性。两者都在处理点云配准时提供了更优的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击上方“计算机视觉工坊”,选择“星标”

干货第一时间送达

前言

在之前的文章中(ICP方法详细推导),我们介绍了ICP的基本思想与详细的推导。本文将介绍ICP方法的两种改进,分别是:PLICP[1]与NICP[2]。本文将分别介绍两种改进的基本思想,具体算法以及一些补充说明。若有理解不到位和错误之处,请以论文原文为准。

第一部分 PLICP

一、基本思想

PLICP中的“PL”表示”Point to Line”,顾名思义,在匹配时是一个点与一个直线进行匹配,而不是传统方法的点与点进行匹配。之所以有这种思想,是因为我们认为每次扫描的数据是对真实物理世界的一个平面的采样,所以我们在匹配时应该尽可能与这个直线去匹配而不是具体的采样点。

(左图棕色曲线表示真实的物理面,蓝色的为带有噪声的采样点;中间表示传统ICP的点点距离,右图表示PLICP方法,匹配时是计算到平面的距离)

二、 算法描述

2.1 利用上一次迭代的变化参数(或初值),对当前采样(curr)的每个点进行变化;

2.2 变换后&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值