Be Yourself: Bounded Attention for Multi-Subject Text-to-Image Generation # 论文阅读

URL

https://arxiv.org/pdf/2403.16990

TD;DR

2024 年 3 月 Snap Research(没听说过这家公司) + 以色列一家大学的文章,目前 1 引用。提出的是一种 training-free 的方法,通过 prompt + location 控制生成多个主体,作者表示提出的方法可以有效避免(外观相似、语义相似的)多主体之间纹理混淆的问题,可以有效独立的控制各个主体生成。
在这里插入图片描述

Model & Method

已有方法生成多主体普遍存在纹理混淆的问题,作者认为根本原因是 SD 模型重 attention 层会对多个不同的物体产生混淆(blend)。如下图所示,作者认为多个物体之间的语意信息比较相近的时候,特别容易出现多物体之间的混淆问题。
在这里插入图片描述

为了证明自己的观点,作者做了一些统计的实验。分别用 1. 小猫和小狗,2. 仓鼠和松鼠 生成图片:

  • 首先分别单独生成两个概念,得到了特征分布(每个点是用 PCA 将 query 投影到 2D 的可视化结果)
  • 然后再一起生成两组概念,用了三种方法,最右侧的是本文的方法。
    在这里插入图片描述

ppl 如下图,正文写的非常啰嗦可以直接直接看图

训练的时候输入 text(包含多个物体),以及每个物体对应的 bbox 信息。每一层都会引导 self-attn、cross-attn 只关注于该物体 bbox 内的特征,通过一组科学的参数引导 bbox 外的特征尽可能为 0。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

去噪时,bbox 只是提供一个大致的参考位置,给模型用来再前几个 step 生成全局的信息。有了前几个 step 的结果之后,会在此基础上去细化 mask 的形状,后续都是基于此形状进行去噪。
在这里插入图片描述
在这里插入图片描述

Dataset & Results

部分结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Thought

  • 感觉这篇文章的 related work 写的不错,后续可以参考里面的相关文献。
  • 正文部分写的稀烂。。。开头说是一个 training-free 的方法,写着写着出来一个 loss 看了半天也没看懂在哪里需要用到 这个 loss。
  • 仔细想了一下,因为有 bbox 位置的输入,所以所谓的 loss 那一步,是否在 bbox 内的 mask 完全是可以得到准确的权重矩阵,所以不需要额外的训练
  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值