LIO-SAM

3D激光SLAM:位姿融合输出,LIO-SAM 提出了一个利用GT-SAM的紧耦合激光雷达惯导里程计的框架。实现了高精度、实时的移动机器人的轨迹估计和建图。这里主要讲解如何通过imu来进行位姿融合输出的。

LIO-SAM的全称是:Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping,从全称上可以看出,该算法是一个紧耦合的雷达惯导里程计(Tightly-coupled Lidar Inertial Odometry),借助的手段就是利用GT-SAM库中的方法。

LIO-SAM 提出了一个利用GT-SAM的紧耦合激光雷达惯导里程计的框架。实现了高精度、实时的移动机器人的轨迹估计和建图。在之前的博客讲解了imu如何进行预积分,最终以imu的频率发布了imu的预测位姿里程计。

主要讲解,最终是如何进行位姿融合输出的。

 Eigen::Affine3f  

其中功能的核心在于位姿间的变换,所以要了解 Eigen::Affine3f 部分的内容。

Affine3f 是eighen库的仿射变换矩阵。实际上就是:平移向量+旋转变换组合而成,可以同时实现旋转,缩放,平移等空间变换。

Eigen库中,仿射变换矩阵的大致用法为:

创建Eigen::Affine3f 对象a;

创建类型为Eigen::Translation3f 对象b,用来存储平移向量;

 创建类型为Eigen::Quaternionf 四元数对象c,用来存储旋转变换。

最后通过以下方式生成最终Affine3f变换矩阵:a=b*c.toRotationMatrix();一个向量通过仿射变换时的方法是result_vector=test_affine*test_vector;

仿射变换包括:平移、旋转、放缩、剪切、反射。平移(translation)和旋转(rotation)顾名思义,两者的组合称之为欧式变换(Euclidean transformation)或刚体变换(rigid transformation);

放缩(scaling)可进一步分为uniform scaling和non-uniform scaling,前者每个坐标轴放缩系数相同(各向同性),后者不同;如果放缩系数为负,则会叠加上反射(reflection)——reflection可以看成是特殊的scaling;

刚体变换+uniform scaling 称之为,相似

<think>好的,我现在需要回答用户关于LIO-SAM是定位算法还是SLAM算法的问题。首先,我应该回顾一下之前用户的问题和之前的对话历史。用户之前询问了ROS中最先进的已知地图下的定位算法,我介绍了AMCL、NDT、基于优化的方法以及深度学习定位,并提到了LIO-SAM作为多传感器融合的例子。现在用户进一步询问LIO-SAM属于定位还是SLAM算法。 接下来,我需要明确LIO-SAM的定义和功能。LIO-SAM的全称是Lidar Inertial Odometry Smoothing and Mapping,从名称上看,它包含了“Odometry”和“Mapping”,暗示了同时定位与建图的特性。但用户可能对定位和SLAM的区别不太清楚,需要明确两者的定义。 定位(Localization)是指在已知地图中确定机器人的位置和姿态,而SLAM(Simultaneous Localization and Mapping)是同时构建未知环境的地图并在此过程中定位。因此,LIO-SAM是否属于定位算法还是SLAM算法,取决于它是否在已知地图下工作,或者是否同时构建地图。 查阅相关资料,LIO-SAM通常被描述为一种紧耦合的激光雷达-IMU融合的SLAM框架,它利用传感器数据实时构建环境地图并估计机器人轨迹。这说明它属于SLAM算法,因为它同时执行定位和建图任务。不过,在某些情况下,如果已经存在先验地图,LIO-SAM可能也可以用于纯定位,但主要设计目的是SLAM。 我需要进一步验证这一点,确保信息准确。查看LIO-SAM的论文或官方文档,确认其核心功能是否为SLAM。例如,LIO-SAM通过优化激光雷达和IMU数据,实现高精度的姿态估计和环境地图构建,这符合SLAM的定义。因此,结论是LIO-SAM属于SLAM算法,而不是单纯的定位算法。 在回答时,需要明确区分定位和SLAM,并解释LIO-SAM的具体工作机制,强调其同时进行定位和建图的特性。同时,可以提到在已知地图的情况下,可能通过调整参数或与其他模块结合来实现定位,但其主要设计目的是SLAM。 总结思考步骤: 1. 明确问题:LIO-SAM属于定位还是SLAM? 2. 回顾定义:定位与SLAM的区别。 3. 分析LIO-SAM的功能:根据名称、设计和应用场景。 4. 查阅资料确认:论文或官方文档说明其属于SLAM。 5. 结构化回答:定义、核心机制、定位与SLAM的区别,应用场景。 确保回答准确,避免混淆概念,并帮助用户理解两者差异。</think>--- ### **LIO-SAM的定位与SLAM属性分析** #### **1. 基础定义** - **定位(Localization)**:在**已知地图**中实时估计机器人位姿(位置+姿态)。 - **SLAM(同步定位与建图)**:在**未知环境**中同时完成地图构建与自身定位。 --- #### **2. LIO-SAM的核心机制** - **全称**:*Lidar-Inertial Odometry Smoothing and Mapping* - **技术定位**: - **属于SLAM算法**,专为**实时构建地图**与**高精度轨迹估计**设计。 - 通过**紧耦合激光雷达(LiDAR)与惯性测量单元(IMU)**,融合多传感器数据,优化位姿并生成全局一致的地图。 #### **3. 关键功能验证** | 特性 | 定位(Localization) | SLAM | LIO-SAM是否符合 | |---------------------|---------------------|--------------------|----------------| | 依赖先验地图 | ✔️ 必需 | ❌ 不依赖 | ❌ 无需先验地图 | | 实时建图能力 | ❌ 无 | ✔️ 核心功能 | ✔️ 支持在线建图 | | 多传感器紧耦合优化 | 可选 | ✔️ 常见设计 | ✔️ 核心设计(LiDAR+IMU) | - **典型应用场景**: - 无人机/机器人在未知环境(如森林、城市峡谷)中自主导航。 - 需同时生成高精度3D点云地图并跟踪自身运动。 --- #### **4. 为何可能被误认为“定位算法”?** - **局部定位功能**: LIO-SAM通过IMU预积分和激光雷达匹配,能输出**高频里程计**(Odometry),提供短期位姿估计。 - **与定位算法的协作**: 在已知地图场景中,可将其建图模块关闭,仅利用其里程计作为定位输入(需定制化修改)。 --- #### **5. 总结** - **本质属性**:LIO-SAM是**SLAM算法**,核心目标为**未知环境下的地图构建与自定位**。 - **扩展应用**:在特定配置下(如固定地图模式),可辅助定位任务,但需二次开发。 若需在ROS中实现**已知地图的定位**,仍建议优先选择AMCL或NDT;若需**未知环境建图+定位**,LIO-SAM是先进选择。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值