Lite DETR

这是一种简单而高效的端到端目标检测框架,可以有效地将检测头的GFLOPs减少60%,同时保持99%的原始性能。高效交错多尺度编码器

最近基于DEDetection-TRansformer(DETR)的模型已经获得了显著的性能。如果不在编码器中重新引入多尺度特征融合,它的成功就无法实现。然而,多尺度特征中过度增加的标记,特别是对于大约75%的低级别特征,在计算上效率很低,这阻碍了DETR模型的实际应用。本文提出了Lite DETR,这是一种简单而高效的端到端目标检测框架,可以有效地将检测头的GFLOPs减少60%,同时保持99%的原始性能。具体而言,论文设计了一个高效的编码器块,以交错的方式更新高级特征(对应于小分辨率特征图)和低级特征(对应于大分辨率特征图)。此外,为了更好地融合多尺度特征,论文开发了一种key-aware的可变形注意力来预测更可靠的注意力权重。综合实验验证了所提出的Lite DETR的有效性和效率,并且高效的编码器策略可以很好地推广到现有的基于DETR的模型中。

论文链接:https://arxiv.org/abs/2303.07335

代码链接:https://github.com/IDEA-Research/Lite-DETR

目标检测旨在通过定位图像中的边界框并预测相应的分类分数来检测图像中感兴趣的目标。在过去的十年里,许多基于卷积网络的经典检测模型[23,24]取得了显著进展。最近,DEtection TRansformer[1](DETR)将Transformers引入到目标检测中,类似DETR的模型在许多基本视觉任务上都取得了很好的性能,如目标检测[13,36,37]、实例分割[5,6,14]和姿态估计[26,28]。

从概念上讲,DETR[1]由三部分组成:主干、Transformer编码器和Transformer解码器。许多研究工作一直在改进主干和解码器部分。例如,DETR中的主干通常是继承的,并且可以在很大程度上受益于预训练的分类模型[10,20]。DETR中的解码器部分是主要的研究重点,许多研究工作试图为DETR查询引入适当的结构,并提高其训练效率[11,13,18,21,36,37]。相比之下,在改进编码器部分方面所做的工作要少得多。朴素DETR中的编码器包括六个Transformer编码器层,它们堆叠在主干的顶部,以改进其特征表示。与经典的检测模型相比,它缺乏多尺度特征,这些特征对物体检测至关重要,尤其是对小目标的检测[9,16,19,22,29]。简单地在多尺度特征上应用Transformer编码器层是不可行的,因为计算成本是特征token数量的二次方。例如,DETR使用C5特征图来应用Transformer编码器,C5特征图是输入图像分辨率的1/32。如果C3特征(1/8比例)包括在多尺度特征中,则仅来自该比例的标记的数量将是来自C5特征图的标记的16倍。Transformer中自注意力的计算成本将高出256倍。

为了解决这个问题,Deformable DETR[37]开发了一种可变形注意力算法,

### 多尺度特征融合在图像分类中的应用 #### 应用实例 多尺度特征融合技术通过结合不同层次的卷积神经网络(CNN)特征来提升模型性能。具体来说,在图像分类任务中,该方法能够捕捉到更丰富的空间和语义信息。 对于基于颜色和纹理特征的多尺度图像检索系统而言,采用多尺度分析可以有效提高识别精度[^1]。此过程涉及提取多个分辨率下的视觉描述符,并将其综合起来用于最终决策。例如,在自然场景图片库中寻找相似对象时,低级的颜色直方图与高级别的边缘方向模式相结合能显著增强匹配度。 另一种实现方式见于Lite DETR架构设计之中,其中引入了一种交错式的多尺度编码器机制,使得每一层都能获取全局上下文感知能力的同时保持计算效率不受影响[^3]。这种设计方案不仅有助于目标检测任务,同样适用于广泛的分类应用场景。 此外,SE模块的应用展示了如何利用注意力机制优化深层网络内部的信息传递路径。通过对各通道的重要性打分并据此调整权重分布,可使后续操作更加聚焦于最具代表性的区域特性之上;而两次上采样的加入则确保了来自不同深度级别的抽象表示得以无缝对接,形成统一且完整的表征向量供顶层全连接层做类别预测之用[^2]。 ```python import torch.nn as nn class MultiScaleFeatureFusion(nn.Module): def __init__(self, input_channels=512): super(MultiScaleFeatureFusion, self).__init__() # Define the SE module to adjust channel weights self.se_module = SELayer(input_channels) # Two upsampling layers for feature map alignment self.up_sample_1 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.up_sample_2 = nn.Upsample(size=(64, 64), mode='bilinear', align_corners=True) def forward(self, x_low_level, x_high_level): adjusted_x_high_level = self.se_module(x_high_level) aligned_feature_map = self.up_sample_1(adjusted_x_high_level) final_output = self.up_sample_2(aligned_feature_map + x_low_level) return final_output def main(): model = MultiScaleFeatureFusion() if __name__ == "__main__": main() ``` #### 效果评估 实验表明,当应用于大规模数据集上的图像分类挑战赛时,上述提到的技术改进均带来了不同程度的效果增益: - 提高了对复杂背景干扰下微弱信号响应的能力; - 减少了过拟合现象的发生概率; - 加强了跨域泛化表现力——即使面对未曾见过的新环境也能维持较高水准的表现质量。 综上所述,多尺度特征融合确实为解决实际问题提供了强有力的支持手段之一。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值