YOLOv8 Pose~瑜伽姿势识别

本文介绍了如何使用YOLOv8Pose,一种先进的对象检测模型,对瑜伽姿势进行分类。从数据准备、GoogleColab上的训练到本地预测,详细步骤展示了如何将这种技术应用于瑜伽姿势识别,以满足日益增长的需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  瑜伽是一种古老的运动,近年来由于其对身心健康的众多益处而广受欢迎。随着人们对瑜伽的兴趣日益浓厚,对能够准确分类瑜伽姿势的自动化系统的需求也越来越大。本文中我们将探讨如何使用 YOLOv8 Pose(一种先进的对象检测模型)对图像和视频中的瑜伽姿势进行分类。

    我们将讨论以下主题:

1. YOLOv8 Pose简介

    YOLO(You Only Look Once)是一种流行的实时目标检测算法,以其速度和准确性而闻名。YOLOv8 Pose 是 YOLOv8 的扩展,专为人体姿势估计而设计。它可以实时检测和分类人体关键点,使其成为瑜伽姿势分类的理想选择。

2. 数据准备

    在开始之前,需要一个包含各种瑜伽姿势的图像或视频的数据集,以及身体关键点的相应标注。确保您的数据集结构良好且组织良好。

 使用 Roboflow 的瑜伽姿势分类数据集

https://universe.roboflow.com/new-workspace-mujgg/yoga-pose

3. 在Google Colab上训练YOLOv8 Pose

    要在 Google Colab 上训练 YOLOv8 Pose&#x

### 如何使用 YOLOv8-Pose 进行人体姿态关键点检测 #### 加载预训练模型 为了执行人体姿态关键点检测,首先需要加载已经训练好的YOLOv8-pose模型。这可以通过指定权重文件路径来完成。 ```python from ultralytics import YOLO def load_model(model_path): # Load a pretrained model using the specified path and set task to 'pose' model = YOLO(model_path, task='pose') return model ``` 此函数`load_model`接收一个参数`model_path`,即保存有预训练权重的`.pt`文件的位置[^3]。 #### 执行预测操作 一旦模型被成功加载,就可以利用它来进行图像上的预测工作。下面定义了一个名为`predict_img`的方法用于处理输入源并返回带有标注的人体关键点图片对象。 ```python def predict_img(source): # Initialize the model by calling previously defined function model = load_model(r'weights/yolov8x-pose-p6.pt') # Execute predictions on given source without saving or displaying them immediately results = model.predict(source=source, save=False, show=False) keypoint_images = [] # Iterate over all detected objects within each frame/image from sources like video frames/images etc. for result in results: # Draw keypoints onto original images and append processed ones into list keypoint_image = result.plot() keypoint_images.append(keypoint_image) return keypoint_images ``` 上述代码片段展示了如何调用`model.predict()`方法传入待分析的数据源(可以是单张图片或多帧视频),并通过循环遍历每一个预测结果以获取绘制好关键点后的最终输出图像列表。 #### 结合Streamlit创建交互界面 为了让用户更便捷地体验这一功能,还可以借助Streamlit库构建简单的Web应用程序接口(API),允许上传本地图片或链接在线资源作为输入,并展示经过处理的结果图。 ```python import streamlit as st st.title('Human Pose Estimation with YOLOv8-Pose') uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png"]) if uploaded_file is not None: bytes_data = uploaded_file.getvalue() img_name = f"data/{uploaded_file.name}" with open(img_name, "wb") as file: file.write(bytes_data) output_imgs = predict_img(img_name) for i, out_img in enumerate(output_imgs): st.image(out_img, caption=f'Result Image {i+1}', use_column_width=True) ``` 这段脚本实现了基本的应用程序逻辑:接受来自用户的媒体文件上传请求;将其传递给之前编写的`predict_img`函数进行处理;最后把生成的一组图像显示出来供查看。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值